Skip to main content

Motion Planning for PDEs

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 157 Accesses

Abstract

Motion planning refers to the design of an open-loop or feedforward control to realize prescribed desired paths for the system states or outputs. For distributed-parameter systems described by partial differential equations (PDEs), this requires to take into account the spatial-temporal system dynamics. Here, flatness-based techniques provide a systematic inversion-based motion planning approach, which is based on the parametrization of any system variable by means of a flat or basic output. With this, the motion planning problem can be solved rather intuitively as is illustrated for linear and semilinear PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Dunbar W, Petit N, Rouchon P, Martin P (2003) Motion planning for a nonlinear Stefan problem. ESAIM Control Optim Calculus Var 9:275–296

    MathSciNet  Google Scholar 

  • Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of non–linear systems: introductory theory and examples. Int J Control 61:1327–1361

    Google Scholar 

  • Fliess M, Mounier H, Rouchon P, Rudolph J (1997) Systèmes linéaires sur les opérateurs de MikusiÅ„ski et commande d’une poutre flexible. ESAIM Proc 2:183–193

    MathSciNet  Google Scholar 

  • Laroche B, Martin P, Rouchon P (2000) Motion planning for the heat equation. Int J Robust Nonlinear Control 10:629–643

    MathSciNet  Google Scholar 

  • Lynch A, Rudolph J (2002) Flatness-based boundary control of a class of quasilinear parabolic distributed parameter systems. Int J Control 75(15):1219–1230

    MathSciNet  Google Scholar 

  • Meurer T (2011) Flatness-based trajectory planning for diffusion-reaction systems in a parallelepipedon – a spectral approach. Automatica 47(5):935–949

    MathSciNet  Google Scholar 

  • Meurer T (2013) Control of higher-dimensional PDEs: flatness and backstepping designs. Communications and control engineering series. Springer, Berlin

    Google Scholar 

  • Meurer T, Krstic M (2011) Finite-time multi-agent deployment: a nonlinear PDE motion planning approach. Automatica 47(11):2534–2542

    MathSciNet  Google Scholar 

  • Meurer T, Kugi A (2009) Trajectory planning for boundary controlled parabolic PDEs with varying parameters on higher-dimensional spatial domains. IEEE Trans Autom Control 54(8): 1854–1868

    MathSciNet  Google Scholar 

  • Meurer T, Zeitz M (2005) Feedforward and feedback tracking control of nonlinear diffusion-convection-reaction systems using summability methods. Ind Eng Chem Res 44:2532–2548

    Google Scholar 

  • Petit N, Rouchon P (2001) Flatness of heavy chain systems. SIAM J Control Optim 40(2):475–495

    MathSciNet  Google Scholar 

  • Petit N, Rouchon P (2002) Dynamics and solutions to some control problems for water-tank systems. IEEE Trans Autom Control 47(4):594–609

    MathSciNet  Google Scholar 

  • Rodino L (1993) Linear partial differential operators in gevrey spaces. World Scientific, Singapore

    Google Scholar 

  • Rouchon P (2001) Motion planning, equivalence, and infinite dimensional systems. Int J Appl Math Comput Sci 11:165–188

    MathSciNet  Google Scholar 

  • Rudolph J (2003) Flatness based control of distributed parameter systems. Berichte aus der Steuerungs– und Regelungstechnik. Shaker–Verlag, Aachen

    Google Scholar 

  • Rudolph J, Woittennek F (2008) Motion planning and open loop control design for linear distributed parameter systems with lumped controls. Int J Control 81(3):457–474

    MathSciNet  Google Scholar 

  • Schörkhuber B, Meurer T, Jüngel A (2013) Flatness of semilinear parabolic PDEs – a generalized Cauchy-Kowalevski approach. IEEE Trans Autom Control 58(9):2277–2291

    Google Scholar 

  • Schröck J, Meurer T, Kugi A (2013) Motion planning for Piezo–actuated flexible structures: modeling, design, and experiment. IEEE Trans Control Syst Technol 21(3):807–819

    Google Scholar 

  • Woittennek F, Mounier H (2010) Controllability of networks of spatially one-dimensional second order P.D.E. – an algebraic approach. SIAM J Control Optim 48(6):3882–3902

    MathSciNet  Google Scholar 

  • Woittennek F, Rudolph J (2003) Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays. ESAIM Control Optim Calculus Var 9: 419–435

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Meurer, T. (2015). Motion Planning for PDEs. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5058-9_14

Download citation

Publish with us

Policies and ethics