Skip to main content

Systemic Inflammatory Response to Cardiopulmonary Bypass in Pediatric Patients and Related Strategies for Prevention

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Cardiopulmonary bypass in pediatric patients is associated with generalized activation of both innate and acquired immunity. The systemic inflammatory response occurs in response to multiple nonphysiologic stimuli. Activation of the inflammatory response involves an intricate cascade which results in pronounced amplification that affects nearly every end-organ system. These processes have a direct role in commonly encountered postoperative complications and can lead to significant morbidity following repair of congenital heart defects. This chapter will discuss the systemic inflammatory response related to cardiopulmonary bypass and measures that attempt to modulate this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Paparella D, Yau TM, Young E (2002) Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 21(2):232–244

    Article  CAS  PubMed  Google Scholar 

  2. Fudulu DP, Gibbison B, Upton T, Stoica SC, Caputo M, Lightman S et al (2018) Corticosteroids in pediatric heart surgery: myth or reality. Front Pediatr 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  3. Butler J, Rocker GM, Westaby S (1993) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 55(2):552–559

    Article  CAS  PubMed  Google Scholar 

  4. Edmunds LH Jr (1993) Blood-surface interactions during cardiopulmonary bypass. J Card Surg 8(3):404–410

    Article  PubMed  Google Scholar 

  5. Bone RC, Sibbald WJ, Sprung CL (1992) The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 101(6):1481–1483

    Article  CAS  PubMed  Google Scholar 

  6. Landis RC, Durandy Y (2017) Dear SIRS … unfaithfully yours. Anaesth Intensive Care 45(2):275

    CAS  PubMed  Google Scholar 

  7. Goldstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric Sepsis (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6(1):2–8

    Article  PubMed  Google Scholar 

  8. Caputo M, Bays S, Rogers CA, Pawade A, Parry AJ, Suleiman S et al (2005) Randomized comparison between normothermic and hypothermic cardiopulmonary bypass in pediatric open-heart surgery. Ann Thorac Surg 80(3):982–988

    Article  PubMed  Google Scholar 

  9. Li YP, Huang J, Huang SG, Xu YG, Xu YY, Liao JY et al (2014) The compromised inflammatory response to bacterial components after pediatric cardiac surgery is associated with cardiopulmonary bypass-suppressed Toll-like receptor signal transduction pathways. J Crit Care 29(2):312 e7–312 13

    Article  CAS  Google Scholar 

  10. Pagowska-Klimek I, Swierzko AS, Michalski M, Glowacka E, Szala-Pozdziej A, Sokolowska A et al (2016) Activation of the lectin pathway of complement by cardiopulmonary bypass contributes to the development of systemic inflammatory response syndrome after paediatric cardiac surgery. Clin Exp Immunol 184(2):257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guvener M, Korun O, Demirturk OS (2015) Risk factors for systemic inflammatory response after congenital cardiac surgery. J Card Surg 30(1):92–96

    Article  PubMed  Google Scholar 

  12. Li X, Robertson CM, Yu X, Cheypesh A, Dinu IA, Li J (2014) Early postoperative systemic inflammatory response is an important determinant for adverse 2-year neurodevelopment-associated outcomes after the Norwood procedure. J Thorac Cardiovasc Surg 148(1):202–206

    Article  PubMed  Google Scholar 

  13. Korotcova L, Kumar S, Agematsu K, Morton PD, Jonas RA, Ishibashi N (2015) Prolonged white matter inflammation after cardiopulmonary bypass and circulatory arrest in a juvenile porcine model. Ann Thorac Surg 100(3):1030–1037

    Article  PubMed  PubMed Central  Google Scholar 

  14. Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF (2016) The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care 20(1):387

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jensen E, Bengtsson A, Berggren H, Ekroth R, Andreasson S (2001) Clinical variables and pro-inflammatory activation in paediatric heart surgery. Scand Cardiovasc J 35(3):201–206

    Article  CAS  PubMed  Google Scholar 

  16. Tassani P, Kunkel R, Richter JA, Oechsler H, Lorenz HP, Braun SL et al (2001) Effect of C1-esterase-inhibitor on capillary leak and inflammatory response syndrome during arterial switch operations in neonates. J Cardiothorac Vasc Anesth 15(4):469–473

    Article  CAS  PubMed  Google Scholar 

  17. Hauser GJ, Ben-Ari J, Colvin MP, Dalton HJ, Hertzog JH, Bearb M et al (1998) Interleukin-6 levels in serum and lung lavage fluid of children undergoing open heart surgery correlate with postoperative morbidity. Intensive Care Med 24(5):481–486

    Article  CAS  PubMed  Google Scholar 

  18. Ungerleider RM, Shen I (2003) Optimizing response of the neonate and infant to cardiopulmonary bypass. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:140–146

    Article  PubMed  Google Scholar 

  19. Jaggers JJ, Neal MC, Smith PK, Ungerleider RM, Lawson JH (1999) Infant cardiopulmonary bypass: a procoagulant state. Ann Thorac Surg 68(2):513–520

    Article  CAS  PubMed  Google Scholar 

  20. Evora PR, Bottura C, Arcencio L, Albuquerque AA, Evora PM, Rodrigues AJ (2016) Key points for curbing cardiopulmonary bypass inflammation. Acta Cir Bras 31(Suppl 1):45–52

    Article  PubMed  Google Scholar 

  21. Zhang S, Wang S, Yao S (2004) Evidence for development of capillary leak syndrome associated with cardiopulmonary bypass in pediatric patients with the homozygous C4A null phenotype. Anesthesiology 100(6):1387–1393

    Article  PubMed  Google Scholar 

  22. Schroeder S, Borger N, Wrigge H, Welz A, Putensen C, Hoeft A et al (2003) A tumor necrosis factor gene polymorphism influences the inflammatory response after cardiac operation. Ann Thorac Surg 75(2):534–537

    Article  PubMed  Google Scholar 

  23. Ryan T, Balding J, McGovern EM, Hinchion J, Livingstone W, Chughtai Z et al (2002) Lactic acidosis after cardiac surgery is associated with polymorphisms in tumor necrosis factor and interleukin 10 genes. Ann Thorac Surg 73(6):1905–1909; discussion 10-1

    Article  PubMed  Google Scholar 

  24. Huber JN, Hilkin BM, Hook JS, Brophy PD, Davenport TL, Davis JE et al (2017) Neutrophil phenotype correlates with postoperative inflammatory outcomes in infants undergoing cardiopulmonary bypass. Pediatr Crit Care Med 18(12):1145–1152

    Article  PubMed  Google Scholar 

  25. Boehne M, Sasse M, Karch A, Dziuba F, Horke A, Kaussen T et al (2017) Systemic inflammatory response syndrome after pediatric congenital heart surgery: incidence, risk factors, and clinical outcome. J Card Surg 32(2):116–125

    Article  PubMed  Google Scholar 

  26. Durandy Y (2014) Minimizing systemic inflammation during cardiopulmonary bypass in the pediatric population. Artif Organs 38(1):11–18

    Article  CAS  PubMed  Google Scholar 

  27. Replogle RL, Gazzaniga AB, Gross RE (1966) Use of corticosteroids during cardiopulmonary bypass: possible lysosome stabilization. Circulation 33(4 Suppl):I86–I92

    CAS  PubMed  Google Scholar 

  28. Fudulu DP, Schadenberg A, Gibbison B, Jenkins I, Lightman S, Angelini GD et al (2018) Corticosteroids and other anti-inflammatory strategies in pediatric heart surgery: a national survey of practice. World J Pediatr Congenit Heart Surg 9(3):289–293

    Article  PubMed  Google Scholar 

  29. Allen M, Sundararajan S, Pathan N, Burmester M, Macrae D (2009) Anti-inflammatory modalities: their current use in pediatric cardiac surgery in the United Kingdom and Ireland. Pediatr Crit Care Med 10(3):341–345

    Article  PubMed  Google Scholar 

  30. Checchia PA, Bronicki RA, Costello JM, Nelson DP (2005) Steroid use before pediatric cardiac operations using cardiopulmonary bypass: an international survey of 36 centers. Pediatr Crit Care Med 6(4):441–444

    Article  PubMed  Google Scholar 

  31. Keski-Nisula J, Pesonen E, Olkkola KT, Peltola K, Neuvonen PJ, Tuominen N et al (2013) Methylprednisolone in neonatal cardiac surgery: reduced inflammation without improved clinical outcome. Ann Thorac Surg 95(6):2126–2132

    Article  PubMed  Google Scholar 

  32. Amanullah MM, Hamid M, Hanif HM, Muzaffar M, Siddiqui MT, Adhi F et al (2016) Effect of steroids on inflammatory markers and clinical parameters in congenital open heart surgery: a randomised controlled trial. Cardiol Young 26(3):506–515

    Article  PubMed  Google Scholar 

  33. Langley SM, Chai PJ, Jaggers JJ, Ungerleider RM (2000) Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg 17(3):279–286

    Article  CAS  PubMed  Google Scholar 

  34. Lodge AJ, Chai PJ, Daggett CW, Ungerleider RM, Jaggers J (1999) Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg 117(3):515–522

    Article  CAS  PubMed  Google Scholar 

  35. Bronicki RA, Backer CL, Baden HP, Mavroudis C, Crawford SE, Green TP (2000) Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 69(5):1490–1495

    Article  CAS  PubMed  Google Scholar 

  36. Keski-Nisula J, Suominen PK, Olkkola KT, Peltola K, Neuvonen PJ, Tynkkynen P et al (2015) Effect of timing and route of methylprednisolone administration during pediatric cardiac surgical procedures. Ann Thorac Surg 99(1):180–185

    Article  PubMed  Google Scholar 

  37. Pasquali SK, Hall M, Li JS, Peterson ED, Jaggers J, Lodge AJ et al (2010) Corticosteroids and outcome in children undergoing congenital heart surgery: analysis of the Pediatric Health Information Systems database. Circulation 122(21):2123–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robertson-Malt S, El Barbary M (2008) Prophylactic steroids for paediatric open-heart surgery: a systematic review. Int J Evid Based Healthc 6(4):391–395

    PubMed  Google Scholar 

  39. Ungerleider RM (1998) Effects of cardiopulmonary bypass and use of modified ultrafiltration. Ann Thorac Surg 65(6 Suppl):S35–S38; discussion S9, S74–S76

    Article  CAS  PubMed  Google Scholar 

  40. Williams GD, Ramamoorthy C, Chu L, Hammer GB, Kamra K, Boltz MG et al (2006) Modified and conventional ultrafiltration during pediatric cardiac surgery: clinical outcomes compared. J Thorac Cardiovasc Surg 132(6):1291–1298

    Article  PubMed  Google Scholar 

  41. Karamlou T, Hickey E, Silliman CC, Shen I, Ungerleider RM (2005) Reducing risk in infant cardiopulmonary bypass: the use of a miniaturized circuit and a crystalloid prime improves cardiopulmonary function and increases cerebral blood flow. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 8:3–11

    Article  Google Scholar 

  42. Gaynor JW (2003) The effect of modified ultrafiltration on the postoperative course in patients with congenital heart disease. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:128–139

    Article  PubMed  Google Scholar 

  43. Gaynor JW, Kuypers M, van Rossem M, Wernovsky G, Marino BS, Tabbutt S et al (2005) Haemodynamic changes during modified ultrafiltration immediately following the first stage of the Norwood reconstruction. Cardiol Young 15(1):4–7

    Article  PubMed  Google Scholar 

  44. Bernardi MH, Rinoesl H, Dragosits K, Ristl R, Hoffelner F, Opfermann P et al (2016) Effect of hemoadsorption during cardiopulmonary bypass surgery – a blinded, randomized, controlled pilot study using a novel adsorbent. Crit Care 20:96

    Article  PubMed  PubMed Central  Google Scholar 

  45. Trager K, Fritzler D, Fischer G, Schroder J, Skrabal C, Liebold A et al (2016) Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: a case series. Int J Artif Organs 39(3):141–146

    Article  PubMed  CAS  Google Scholar 

  46. Sasse M, Dziuba F, Jack T, Koditz H, Kaussen T, Bertram H et al (2015) In-line filtration decreases systemic inflammatory response syndrome, renal and hematologic dysfunction in pediatric cardiac intensive care patients. Pediatr Cardiol 36(6):1270–1278

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amand T, Pincemail J, Blaffart F, Larbuisson R, Limet R, Defraigne JO (2002) Levels of inflammatory markers in the blood processed by autotransfusion devices during cardiac surgery associated with cardiopulmonary bypass circuit. Perfusion 17(2):117–123

    Article  CAS  PubMed  Google Scholar 

  48. Bauer A, Hausmann H, Schaarschmidt J, Scharpenberg M, Troitzsch D, Johansen P et al (2018) Shed-blood-separation and cell-saver: an integral part of MiECC? Shed-blood-separation and its influence on the perioperative inflammatory response during coronary revascularization with minimal invasive extracorporeal circulation systems – a randomized controlled trial. Perfusion 33(2):136–147

    Article  PubMed  Google Scholar 

  49. Durandy Y (2016) Rationale for implementation of warm cardiac surgery in pediatrics. Front Pediatr 4:43

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schmitt KR, Fedarava K, Justus G, Redlin M, Bottcher W, Delmo Walter EM et al (2016) Hypothermia during cardiopulmonary bypass increases need for inotropic support but does not impact inflammation in children undergoing surgical ventricular septal defect closure. Artif Organs 40(5):470–479

    Article  CAS  PubMed  Google Scholar 

  51. Engels M, Bilgic E, Pinto A, Vasquez E, Wollschlager L, Steinbrenner H et al (2014) A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage. J Inflamm (Lond) 11:26

    Article  CAS  Google Scholar 

  52. Kohira S, Oka N, Inoue N, Itatani K, Kitamura T, Horai T et al (2014) Effect of additional preoperative administration of the neutrophil elastase inhibitor sivelestat on perioperative inflammatory response after pediatric heart surgery with cardiopulmonary bypass. Artif Organs 38(12):1018–1023

    Article  CAS  PubMed  Google Scholar 

  53. Inoue N, Oka N, Kitamura T, Shibata K, Itatani K, Tomoyasu T et al (2013) Neutrophil elastase inhibitor sivelestat attenuates perioperative inflammatory response in pediatric heart surgery with cardiopulmonary bypass. Int Heart J 54(3):149–153

    Article  CAS  PubMed  Google Scholar 

  54. Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T (2014) The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia 69(7):693–700

    Article  CAS  PubMed  Google Scholar 

  55. Sayed S, Idriss NK, Sayyedf HG, Ashry AA, Rafatt DM, Mohamed AO et al (2015) Effects of propofol and isoflurane on haemodynamics and the inflammatory response in cardiopulmonary bypass surgery. Br J Biomed Sci 72(3):93–101

    Article  CAS  PubMed  Google Scholar 

  56. James C, Millar J, Horton S, Brizard C, Molesworth C, Butt W (2016) Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med 42(11):1744–1752

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Xue Q, Yan F, Liu J, Li S, Hu S (2015) Ulinastatin protects against acute kidney injury in infant piglets model undergoing surgery on hypothermic low-flow cardiopulmonary bypass. PLoS One 10(12):e0144516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. He QL, Zhong F, Ye F, Wei M, Liu WF, Li MN et al (2014) Does intraoperative ulinastatin improve postoperative clinical outcomes in patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Biomed Res Int 2014:630835

    PubMed  PubMed Central  Google Scholar 

  59. Fujii Y, Shirai M, Takewa Y, Tatsumi E (2016) Cardiopulmonary bypass with low- versus high-priming volume: comparison of inflammatory responses in a rat model. ASAIO J 62(3):286–290

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt BS, Jordan JE, Lane MR, DiPasquale VM, Graf LP, Ootaki Y et al (2017) Timing of adding blood to prime affects inflammatory response to neonatal cardiopulmonary bypass. Cardiol Young 27(3):480–487

    Article  PubMed  Google Scholar 

  61. Costa A, Parham DR, Ashley JE, Nguyen KH (2018) A table mounted cardiopulmonary bypass system for pediatric cardiac surgery. Ann Thorac Surg 106:e163–e165

    Article  PubMed  Google Scholar 

  62. Jensen E, Andreasson S, Bengtsson A, Berggren H, Ekroth R, Larsson LE et al (2004) Changes in hemostasis during pediatric heart surgery: impact of a biocompatible heparin-coated perfusion system. Ann Thorac Surg 77(3):962–967

    Article  PubMed  Google Scholar 

  63. Ueyama K, Nishimura K, Nishina T, Nakamura T, Ikeda T, Komeda M (2004) PMEA coating of pump circuit and oxygenator may attenuate the early systemic inflammatory response in cardiopulmonary bypass surgery. ASAIO J 50(4):369–372

    Article  CAS  PubMed  Google Scholar 

  64. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R (2015) Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 113:108–120

    Article  CAS  PubMed  Google Scholar 

  65. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB (2018) Cardiovascular metabolomics. Circ Res 122:1238–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Correia GD, Wooi Ng K, Wijeyesekera A, Gala-Peralta S, Williams R, MacCarthy-Morrogh S, Jimenez B, Inwald D, Macrae D, Frost G, Holmes E, Pathan N (2015) Metabolic profiling of children undergoing surgery for congenital heart disease. Crit Care Med 43:1467–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davidson JA, Pfeifer Z, Frank B, Tong S, Urban TT, Wischmeyer PA, Mourani P, Landeck B, Christians U, Klawitter J (2018) Metabolomic fingerprinting of infants undergoing cardiopulmonary bypass: changes in metabolic pathways and association with mortality and cardiac intensive care unit length of stay. J Am Heart Assoc 7(24):e010711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kotlinska-Hasiec E, Nowicka-Stazka P, Parada-Turska J, Stazka K, Stazka J, Zadora P, Dabrowski W (2015) Plasma kynurenic acid concentration in patients undergoing cardiac surgery: effect of anaesthesia. Arch Immunol Ther Exp 63:129–137

    Article  CAS  Google Scholar 

  69. Ristagno G, Latini R, Vaahersalo J, Masson S, Kurola J, Varpula T, Lucchetti J, Fracasso C, Guiso G, Montanelli A, Barlera S, Gobbi M, Tiainen M, Pettila V, Skrifvars MB, FINNRESUSCI Investigators (2014) Early activation of the kynurenine pathway predicts early death and long-term outcome in patients resuscitated from out-of-hospital cardiac arrest. J Am Heart Assoc 3:e001094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Karamlou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murthy, R., Karamlou, T., Ungerleider, R.M. (2020). Systemic Inflammatory Response to Cardiopulmonary Bypass in Pediatric Patients and Related Strategies for Prevention. In: da Cruz, E., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_77-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_77-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics