Skip to main content

Catheter-Based Interventions on Right Ventricular Outflow Tract

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Congenital heart diseases (CHD) affecting the RVOT (right ventricular outflow tract) represent around 20% of CHD population. Despite the success of contemporary approaches with early complete repair, these are far from being curative and late complications are frequent. The most common complication is RVOT dysfunction, affecting most patients in the form of pulmonary regurgitation, pulmonary stenosis, or both, and can lead to development of symptoms of exercise intolerance, arrhythmias, and sudden cardiac death. Optimal timing of restoration of RVOT functionality in asymptomatic patients is still a matter of debate. Surgically implanted conduit longevity depends on several aspects such as patient age at the time of the operation, heart defect type, and surgical approach. Conduit dysfunction usually occurs within 10–15 years and exposes patients to multiple risky operations over their lifetime. The recent availability of a percutaneous approach to treat RVOT dysfunction, therefore, offers an attractive solution, as it permits earlier intervention without the problems associated with surgery and cardiopulmonary bypass. Midterm results are promising, and the technique has been proven safe and has provided efficacious relief of pressure and/or volume overload. Following percutaneous pulmonary valve implantation (PPVI), there is a significant remodeling of biventricular volumes with improvement in biventricular systolic function. These results are associated with improvement of symptoms and objective exercise capacity. However, PPVI is not free from possible complications. These have been reduced by improving the implantation technique (learning curve) and the valve design (hammock effect). Due to anatomical (size and morphology) and dynamic reasons, with the current device, only 15 % of patients with RVOT dysfunction are eligible for such a treatment, but future valve design and advances in four-dimensional imaging techniques will most likely broaden its applicability, thus making PPVI an even better alternative to surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Marelli AJ et al (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115(2):163–172

    Article  PubMed  Google Scholar 

  2. Perloff JK, Warnes CA (2001) Challenges posed by adults with repaired congenital heart disease. Circulation 103(21):2637–2643

    Article  CAS  PubMed  Google Scholar 

  3. Warnes CA et al (2001) Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol 37(5):1170–1175

    Article  CAS  PubMed  Google Scholar 

  4. Stark J et al (1998) Fate of subpulmonary homograft conduits: determinants of late homograft failure. J Thorac Cardiovasc Surg 115(3):506–514. discussion 514-6

    Article  CAS  PubMed  Google Scholar 

  5. Oosterhof T et al (2006) Long-term follow-up of homograft function after pulmonary valve replacement in patients with tetralogy of Fallot. Eur Heart J 27(12):1478–1484

    Article  PubMed  Google Scholar 

  6. Shebani SO et al (2006) Right ventricular outflow tract reconstruction using Contegra valved conduit: natural history and conduit performance under pressure. Eur J Cardiothorac Surg 29(3):397–405

    Article  PubMed  Google Scholar 

  7. Gatzoulis MA et al (2000) Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet 356(9234):975–981

    Article  CAS  PubMed  Google Scholar 

  8. Discigil B et al (2001) Late pulmonary valve replacement after repair of tetralogy of Fallot. J Thorac Cardiovasc Surg 121(2):344–351

    Article  CAS  PubMed  Google Scholar 

  9. Therrien J, Marx GR, Gatzoulis MA (2002) Late problems in tetralogy of Fallot--recognition, management, and prevention. Cardiol Clin 20(3):395–404

    Article  PubMed  Google Scholar 

  10. Nakanishi T et al (1994) Intravascular stents for management of pulmonary artery and right ventricular outflow obstruction. Heart Vessel 9(1):40–48

    Article  CAS  Google Scholar 

  11. Bonhoeffer P et al (2000) Transcatheter implantation of a bovine valve in pulmonary position: a lamb study. Circulation 102(7):813–816

    Article  CAS  PubMed  Google Scholar 

  12. Bonhoeffer P et al (2000) Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356(9239):1403–1405

    Article  CAS  PubMed  Google Scholar 

  13. Garay F, Webb J, Hijazi ZM (2006) Percutaneous replacement of pulmonary valve using the Edwards-Cribier percutaneous heart valve: first report in a human patient. Catheter Cardiovasc Interv 67(5):659–662

    Article  PubMed  Google Scholar 

  14. Biernacka EK, Ruzyllo W, Demkow M (2017) Percutaneous pulmonary valve implantation - state of the art and polish experience. Postepy Kardiol Interwencyjnej 13(1):3–9

    PubMed  PubMed Central  Google Scholar 

  15. Stout KK et al (2019) 2018 AHA/ACC guideline for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 139(14):e698–e800

    PubMed  Google Scholar 

  16. Baumgartner H et al (2020) 2020 ESC guidelines for the management of adult congenital heart disease. Eur Heart J

    Google Scholar 

  17. Borik S et al (2015) Percutaneous pulmonary valve implantation: 5 years of follow-up: does age influence outcomes? Circ Cardiovasc Interv 8(2):e001745

    Article  PubMed  Google Scholar 

  18. Geva T (2011) Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson 13:9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kilner PJ et al (2010) Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J 31(7):794–805

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maceira AM et al (2006) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27(23):2879–2888

    Article  PubMed  Google Scholar 

  21. Ebel S et al (2019) 3D-assessment of RVOT dimensions prior percutaneous pulmonary valve implantation: comparison of contrast-enhanced magnetic resonance angiography versus 3D steady-state free precession sequence. Int J Cardiovasc Imaging 35(8):1453–1463

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spiewak M et al (2011) Quantitative assessment of pulmonary regurgitation in patients with and without right ventricular tract obstruction. Eur J Radiol 80(2):e164–e168

    Article  PubMed  Google Scholar 

  23. Spiewak M et al (2012) The ratio of right ventricular volume to left ventricular volume reflects the impact of pulmonary regurgitation independently of the method of pulmonary regurgitation quantification. Eur J Radiol 81(10):e977–e981

    Article  PubMed  Google Scholar 

  24. Babu-Narayan SV et al (2006) Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation 113(3):405–413

    Article  CAS  PubMed  Google Scholar 

  25. Broberg CS et al (2016) Diffuse LV myocardial fibrosis and its clinical associations in adults with repaired tetralogy of Fallot. JACC Cardiovasc Imaging 9(1):86–87

    Article  PubMed  Google Scholar 

  26. Tang D et al (2016) Mechanical stress is associated with right ventricular response to pulmonary valve replacement in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg 151(3):687–694. e3

    Article  PubMed  Google Scholar 

  27. Khambadkone S et al (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112(8):1189–1197

    Article  PubMed  Google Scholar 

  28. Lurz, P., et al., Percutaneous pulmonary valve implantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2009: p. 112-117.

    Google Scholar 

  29. McElhinney DB, Hennesen JT (2013) The melody(R) valve and ensemble(R) delivery system for transcatheter pulmonary valve replacement. Ann N Y Acad Sci 1291:77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sinha S et al (2019) Initial results from the off-label use of the SAPIEN S3 valve for percutaneous transcatheter pulmonary valve replacement: a multi-institutional experience. Catheter Cardiovasc Interv 93(3):455–463

    PubMed  Google Scholar 

  31. Nordmeyer J et al (2011) Pre-stenting with a bare metal stent before percutaneous pulmonary valve implantation: acute and 1-year outcomes. Heart 97(2):118–123

    Article  PubMed  Google Scholar 

  32. Cabalka AK et al (2017) Relationships among conduit type, pre-stenting, and outcomes in patients undergoing Transcatheter pulmonary valve replacement in the prospective north American and European melody valve trials. JACC Cardiovasc Interv 10(17):1746–1759

    Article  PubMed  Google Scholar 

  33. Faccini A, Butera G (2018) Tricuspid regurgitation as a complication of Edwards Sapien XT valve implantation in pulmonary position a problem to deal with. Catheter Cardiovasc Interv 91(5):927–931

    Article  PubMed  Google Scholar 

  34. Morgan GJ et al (2019) SAPIEN valve for percutaneous transcatheter pulmonary valve replacement without "pre-stenting": a multi-institutional experience. Catheter Cardiovasc Interv 93(2):324–329

    Article  PubMed  Google Scholar 

  35. Kenny D et al (2019) Use of 65 cm large caliber Dryseal sheaths to facilitate delivery of the Edwards SAPIEN valve to dysfunctional right ventricular outflow tracts. Catheter Cardiovasc Interv 94(3):409–413

    Article  PubMed  Google Scholar 

  36. Martin MH et al (2018) Safety and feasibility of melody Transcatheter pulmonary valve replacement in the native right ventricular outflow tract: a Multicenter Pediatric heart network scholar study. JACC Cardiovasc Interv 11(16):1642–1650

    Article  PubMed  Google Scholar 

  37. Boudjemline Y et al (2012) Outcomes and safety of transcatheter pulmonary valve replacement in patients with large patched right ventricular outflow tracts. Arch Cardiovasc Dis 105(8-9):404–413

    Article  PubMed  Google Scholar 

  38. Qureshi AM et al (2018) Branch pulmonary artery valve implantation reduces pulmonary regurgitation and improves right ventricular size/function in patients with large right ventricular outflow tracts. JACC Cardiovasc Interv 11(6):541–550

    Article  PubMed  Google Scholar 

  39. Shahanavaz S et al (2018) Transcatheter pulmonary valve replacement with the melody valve in small diameter expandable right ventricular outflow tract conduits. JACC Cardiovasc Interv 11(6):554–564

    Article  PubMed  Google Scholar 

  40. Berman DP et al (2014) Feasibility and short-term outcomes of percutaneous transcatheter pulmonary valve replacement in small (<30 kg) children with dysfunctional right ventricular outflow tract conduits. Circ Cardiovasc Interv 7(2):142–148

    Article  PubMed  Google Scholar 

  41. Martin MH et al (2018) Percutaneous transcatheter pulmonary valve replacement in children weighing less than 20 kg. Catheter Cardiovasc Interv 91(3):485–494

    Article  PubMed  Google Scholar 

  42. Gupta A et al (2017) Initial experience with elective Perventricular melody valve placement in small patients. Pediatr Cardiol 38(3):575–581

    Article  PubMed  Google Scholar 

  43. Cabalka AK et al (2018) Transcatheter pulmonary valve replacement using the melody valve for treatment of dysfunctional surgical bioprostheses: a multicenter study. J Thorac Cardiovasc Surg 155(4):1712–1724. e1

    Article  PubMed  Google Scholar 

  44. Shahanavaz S et al (2018) Intentional fracture of bioprosthetic valve frames in patients undergoing valve-in-valve Transcatheter pulmonary valve replacement. Circ Cardiovasc Interv 11(8):e006453

    Article  PubMed  Google Scholar 

  45. McElhinney DB et al (2011) Stent fracture, valve dysfunction, and right ventricular outflow tract reintervention after transcatheter pulmonary valve implantation: patient-related and procedural risk factors in the US melody valve trial. Circ Cardiovasc Interv 4(6):602–614

    Article  PubMed  Google Scholar 

  46. Kenny D et al (2018) 3-year outcomes of the Edwards SAPIEN Transcatheter heart valve for conduit failure in the pulmonary position from the COMPASSION Multicenter clinical trial. JACC Cardiovasc Interv 11(19):1920–1929

    Article  PubMed  Google Scholar 

  47. Delaney JW et al (2018) Covered CP stent for treatment of right ventricular conduit injury during melody Transcatheter pulmonary valve replacement. Circ Cardiovasc Interv 11(10):e006598

    Article  PubMed  Google Scholar 

  48. Nordmeyer J et al (2007) Risk stratification, systematic classification, and anticipatory management strategies for stent fracture after percutaneous pulmonary valve implantation. Circulation 115(11):1392–1397

    Article  PubMed  Google Scholar 

  49. Sridharan S et al (2006) Images in cardiovascular medicine. Transcatheter right ventricular outflow tract intervention: the risk to the coronary circulation. Circulation 113(25):e934–e935

    Article  PubMed  Google Scholar 

  50. Faccini A et al (2018) Percutaneous pulmonary valve implantation contraindicated by severe aortic regurgitation due to left coronary sinus deformation. Circ J 82(8):2212

    Article  PubMed  Google Scholar 

  51. Lindsay I et al (2016) Aortic root compression during transcatheter pulmonary valve replacement. Catheter Cardiovasc Interv 88(5):814–821

    Article  PubMed  Google Scholar 

  52. Malekzadeh-Milani S et al (2018) French national survey on infective endocarditis and the melody valve in percutaneous pulmonary valve implantation. Arch Cardiovasc Dis 111(8-9):497–506

    Article  PubMed  Google Scholar 

  53. Groning M et al (2019) Infective endocarditis in right ventricular outflow tract conduits: a register-based comparison of homografts, Contegra grafts and melody transcatheter valves. Eur J Cardiothorac Surg 56(1):87–93

    Article  PubMed  Google Scholar 

  54. Hascoet S et al (2017) Infective endocarditis risk after percutaneous pulmonary valve implantation with the melody and Sapien valves. JACC Cardiovasc Interv 10(5):510–517

    Article  PubMed  Google Scholar 

  55. McElhinney DB et al (2013) Infective endocarditis after transcatheter pulmonary valve replacement using the melody valve: combined results of 3 prospective north American and European studies. Circ Cardiovasc Interv 6(3):292–300

    Article  PubMed  Google Scholar 

  56. Esmaeili A et al (2019) Percutaneous pulmonary valve implantation (PPVI) in non-obstructive right ventricular outflow tract: limitations and mid-term outcomes. Transl Pediatr 8(2):107–113

    Article  PubMed  PubMed Central  Google Scholar 

  57. Habib G et al (2015) ESC guidelines for the management of infective endocarditis: the task force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J, 2015 36(44):3075–3128

    Google Scholar 

  58. Bos D et al (2020) Infective endocarditis in patients after percutaneous pulmonary valve implantation with the stent-mounted bovine jugular vein valve: clinical experience and evaluation of the modified Duke criteria. Int J Cardiol

    Google Scholar 

  59. Ran L et al (2019) Percutaneous pulmonary valve implantation in patients with right ventricular outflow tract dysfunction: a systematic review and meta-analysis. Ther Adv Chronic Dis 10:2040622319857635

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cheatham JP et al (2015) Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation 131(22):1960–1970

    Article  PubMed  Google Scholar 

  61. Lunze FI et al (2016) Progressive intermediate-term improvement in ventricular and atrioventricular interaction after transcatheter pulmonary valve replacement in patients with right ventricular outflow tract obstruction. Am Heart J 179:87–98

    Article  PubMed  Google Scholar 

  62. Lurz P et al (2014) Impact of percutaneous pulmonary valve implantation for right ventricular outflow tract dysfunction on exercise recovery kinetics. Int J Cardiol 177(1):276–280

    Article  PubMed  Google Scholar 

  63. Hasan BS et al (2014) Effects of transcatheter pulmonary valve replacement on the hemodynamic and ventricular response to exercise in patients with obstructed right ventricle-to-pulmonary artery conduits. JACC Cardiovasc Interv 7(5):530–542

    Article  PubMed  Google Scholar 

  64. Muller J et al (2014) Improved exercise performance and quality of life after percutaneous pulmonary valve implantation. Int J Cardiol 173(3):388–392

    Article  PubMed  Google Scholar 

  65. Hager A et al (2017) Five-year results from a prospective multicentre study of percutaneous pulmonary valve implantation demonstrate sustained removal of significant pulmonary regurgitation, improved right ventricular outflow tract obstruction and improved quality of life. EuroIntervention 12(14):1715–1723

    Article  PubMed  Google Scholar 

  66. Li WF et al (2018) Comparison of valvar and right ventricular function following transcatheter and surgical pulmonary valve replacement. Congenit Heart Dis 13(1):140–146

    Article  PubMed  Google Scholar 

  67. Sharma V et al (2018) Pulmonary valve replacement: a single-institution comparison of surgical and Transcatheter valves. Ann Thorac Surg 106(3):807–813

    Article  PubMed  Google Scholar 

  68. Schneider H et al (2015) Melody transcatheter valve: histopathology and clinical implications of nine explanted devices. Int J Cardiol 189:124–131

    Article  PubMed  Google Scholar 

  69. Zahn EM (2019) Self-expanding pulmonary valves for large diameter right ventricular outflow tracts. Interv Cardiol Clin 8(1):73–80

    PubMed  Google Scholar 

  70. Schievano S et al (2007) Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J Cardiovasc Magn Reson 9(4):687–695

    Article  PubMed  Google Scholar 

  71. Schievano S et al (2011) Four-dimensional computed tomography: a method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle. Eur Radiol 21(1):36–45

    Article  PubMed  Google Scholar 

  72. Vukicevic M et al (2017) Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 10(2):171–184

    Article  PubMed  PubMed Central  Google Scholar 

  73. Anwar S et al (2018) 3D printing is a transformative Technology in Congenital Heart Disease. JACC Basic Transl Sci 3(2):294–312

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pluchinotta FR et al (2020) 3-dimensional personalized planning for transcatheter pulmonary valve implantation in a dysfunctional right ventricular outflow tract. Int J Cardiol 309:33–39

    Article  PubMed  Google Scholar 

  75. Mollet A et al (2007) Off-pump replacement of the pulmonary valve in large right ventricular outflow tracts: a transcatheter approach using an intravascular infundibulum reducer. Pediatr Res 62(4):428–433

    Article  PubMed  Google Scholar 

  76. Boudjemline Y et al (2004) Percutaneous pulmonary valve replacement in a large right ventricular outflow tract: an experimental study. J Am Coll Cardiol 43(6):1082–1087

    Article  PubMed  Google Scholar 

  77. Sosnowski C et al (2016) Hybrid pulmonary artery plication followed by transcatheter pulmonary valve replacement: comparison with surgical PVR. Catheter Cardiovasc Interv 88(5):804–810

    Article  PubMed  Google Scholar 

  78. Schievano S et al (2010) First-in-man implantation of a novel percutaneous valve: a new approach to medical device development. EuroIntervention 5(6):745–750

    Article  PubMed  Google Scholar 

  79. Bergersen L et al (2017) Harmony feasibility trial: acute and short-term outcomes with a self-expanding Transcatheter pulmonary valve. JACC Cardiovasc Interv 10(17):1763–1773

    Article  PubMed  Google Scholar 

  80. Benson LN et al (2020) Three-year outcomes from the harmony native outflow tract early feasibility study. Circ Cardiovasc Interv 13(1):e008320

    Article  PubMed  Google Scholar 

  81. Zahn EM et al (2018) First human implant of the Alterra Adaptive Prestent(TM): A new self-expanding device designed to remodel the right ventricular outflow tract. Catheter Cardiovasc Interv 91(6):1125–1129

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cao QL et al (2014) Early clinical experience with a novel self-expanding percutaneous stent-valve in the native right ventricular outflow tract. Catheter Cardiovasc Interv 84(7):1131–1137

    Article  PubMed  Google Scholar 

  83. Promphan W et al (2016) Percutaneous pulmonary valve implantation with the Venus P-valve: clinical experience and early results. Cardiol Young 26(4):698–710

    Article  PubMed  Google Scholar 

  84. Garay F et al (2017) Early experience with the Venus pvalve for percutaneous pulmonary valve implantation in native outflow tract. Neth Heart J 25(2):76–81

    Article  CAS  PubMed  Google Scholar 

  85. Kim GB et al (2018) Successful feasibility human trial of a new self-expandable percutaneous pulmonary valve (Pulsta valve) implantation using knitted nitinol wire backbone and Trileaflet alpha-gal-free porcine pericardial valve in the native right ventricular outflow tract. Circ Cardiovasc Interv 11(6):e006494

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pilati, M., Frigiola, A., Bonhoeffer, P., Butera, G. (2021). Catheter-Based Interventions on Right Ventricular Outflow Tract. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_68-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_68-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics