Skip to main content

Abstract

The human capacity to oxygenate and ventilate requires a complex association between the cardiovascular and pulmonary systems. As muscles of respiration inhale gas with a high fraction of oxygen, the heart pumps de-oxygenated blood throughout the pulmonary circulation allowing for the waste product, carbon dioxide, to be exchanged for oxygen. The morphogenesis of the pulmonary and cardiac systems are intimately connected through the pulmonary vasculature with highly complicated interactions between molecular mediators of mesenchyme and endodermal growth. Lung embryology can be divided into five major stages including the embryonic, pseudoglandular, canalicular, saccular, and alveolar stages. Throughout these stages, appropriate angiogenesis and vasculogenesis are vital components to effective cardiopulmonary interactions during ex-utero life. Disruptions in appropriate lung development, such as that seen in bronchopulmonary dysplasia, Down syndrome (trisomy 21), or alveolar capillary dysplasia can lead to disordered gas exchange and complicate the course of a child with associated cardiac abnormalities. This chapter seeks to review normal lung and pulmonary vascular development, summarizes the molecular determinants of lung morphogenesis, and reviews common pathologies related to disordered lung development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Swarr DT, Wert SE, Whitsett JA (2019) Molecular determinants of lung morphogenesis. In: Wilmott RW, Deterding R, Li A, Ratjen F, Sly P, Zar HJ et al (eds) Kendig’s disorders of the respiratory tract in children, 9th edn. Elsevier, Philadelphia, pp 26–39

    Chapter  Google Scholar 

  2. Jones RC, Capen DE (2011) Pulmonary vascular development. In: Yuan JX-J, Garcia JGN, Hales CA, Rich S, Archer SL, West JB (eds) Textbook of pulmonary vascular disease, 1st edn. Springer, New York, pp 25–60

    Chapter  Google Scholar 

  3. Bogue CW, Lou LJ, Vasavada H, Wilson CM, Jacobs HC (1996) Expression of Hoxb genes in the developing mouse foregut and lung. Am J Respir Cell Mol Biol 15:163–171

    Article  CAS  PubMed  Google Scholar 

  4. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM et al (2009) Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17:290–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878

    Article  CAS  PubMed  Google Scholar 

  6. Lazzaro D, Price M, de Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113:1093–1104

    Article  CAS  PubMed  Google Scholar 

  7. Shannon JM, Hyatt BA (2004) Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 66:625–645

    Article  CAS  PubMed  Google Scholar 

  8. Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624

    Article  CAS  PubMed  Google Scholar 

  9. Maeda Y, Dave V, Whitsett JA (2007) Transcriptional control of lung morphogenesis. Physiol Rev 87:219–244

    Article  CAS  PubMed  Google Scholar 

  10. Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF et al (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607

    Article  CAS  PubMed  Google Scholar 

  12. deMello DE, Reid LM (2000) Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr Dev Pathol 3:439–449

    Article  CAS  PubMed  Google Scholar 

  13. Peng T, Tian Y, Boogerd CJ, Lu MM, Kadzik RS, Stewart KM et al (2013) Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 500:589–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV (2000) The molecular basis of lung morphogenesis. Mech Dev 92:55–81

    Article  CAS  PubMed  Google Scholar 

  15. Cardoso WV (2001) Molecular regulation of lung development. Annu Rev Physiol 63:471–494

    Article  CAS  PubMed  Google Scholar 

  16. Blatt EN, Yan XH, Wuerffel MK, Hamilos DL, Brody SL (1999) Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am J Respir Cell Mol Biol 21:168–176

    Article  CAS  PubMed  Google Scholar 

  17. Greenberg JM, Thompson FY, Brooks SK, Shannon JM, McCormick-Shannon K, Cameron JE et al (2002) Mesenchymal expression of vascular endothelial growth factors D and A defines vascular patterning in developing lung. Dev Dyn 224:144–153

    Article  CAS  PubMed  Google Scholar 

  18. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    Article  CAS  PubMed  Google Scholar 

  19. Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203:80–92

    Article  CAS  PubMed  Google Scholar 

  20. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Article  CAS  PubMed  Google Scholar 

  21. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  22. Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P et al (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271:5519–5523

    Article  CAS  PubMed  Google Scholar 

  23. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    Article  CAS  PubMed  Google Scholar 

  24. de Jong EM, Felix JF, de Klein A, Tibboel D (2010) Etiology of esophageal atresia and tracheoesophageal fistula: “mind the gap”. Curr Gastroenterol Rep 12:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leslie KO, Mitchell JJ, Woodcock-Mitchell JL, Low RB (1990) Alpha smooth muscle actin expression in developing and adult human lung. Differentiation 44:143–149

    Article  CAS  PubMed  Google Scholar 

  26. Tyler NK, Hyde DM, Hendrickx AG, Plopper CG (1989) Cytodifferentiation of two epithelial populations of the respiratory bronchiole during fetal lung development in the rhesus monkey. Anat Rec 225:297–309

    Article  CAS  PubMed  Google Scholar 

  27. Khoor A, Stahlman MT, Gray ME, Whitsett JA (1994) Temporal-spatial distribution of SP-B and SP-C proteins and mRNAs in developing respiratory epithelium of human lung. J Histochem Cytochem 42:1187–1199

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, Lim L, Costa RH, Whitsett JA (1996) Thyroid transcription factor-1, hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory protein in developing mouse lung. J Histochem Cytochem 44:1183–1193

    Article  CAS  PubMed  Google Scholar 

  29. Maniscalco WM, Wilson CM, Gross I, Gobran L, Rooney SA, Warshaw JB (1978) Development of glycogen and phospholipid metabolism in fetal and newborn rat lung. Biochim Biophys Acta 530:333–346

    Article  CAS  PubMed  Google Scholar 

  30. Sardon O, Torrent-Vernetta A, Rovira-Amigo S, Dishop MK, Ferreres JC, Navarro A et al (2019) Isolated pulmonary interstitial glycogenosis associated with alveolar growth abnormalities: a long-term follow-up study. Pediatr Pulmonol 54:837–846

    Article  PubMed  Google Scholar 

  31. Cutz E, Gillan JE, Bryan AC (1985) Neuroendocrine cells in the developing human lung: morphologic and functional considerations. Pediatr Pulmonol 1:S21–S29

    CAS  PubMed  Google Scholar 

  32. Nevel RJ, Garnett ET, Schaudies DA, Young LR (2018) Growth trajectories and oxygen use in neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 53:656–663

    Article  PubMed  PubMed Central  Google Scholar 

  33. deMello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16:568–581

    Article  CAS  PubMed  Google Scholar 

  34. Galambos C, deMello DE (2007) Molecular mechanisms of pulmonary vascular development. Pediatr Dev Pathol 10:1–17

    Article  CAS  PubMed  Google Scholar 

  35. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    Article  CAS  PubMed  Google Scholar 

  36. Boyden EA (1970) The developing bronchial arteries in a fetus of the twelfth week. Am J Anat 129:357–368

    Article  CAS  PubMed  Google Scholar 

  37. Bunton D, MacDonald A, Brown T, Tracey A, McGrath JC, Shaw AM (2000) 5-Hydroxytryptamine- and U46619-mediated vasoconstriction in bovine pulmonary conventional and supernumerary arteries: effect of endogenous nitric oxide. Clin Sci 98:81–89

    Article  CAS  Google Scholar 

  38. Galambos C, Sims-Lucas S, Abman SH (2013) Histologic evidence of intrapulmonary anastomoses by three-dimensional reconstruction in severe bronchopulmonary dysplasia. Ann Am Thorac Soc 10:474–481

    Article  PubMed  PubMed Central  Google Scholar 

  39. Galambos C, Sims-Lucas S, Abman SH (2014) Three-dimensional reconstruction identifies misaligned pulmonary veins as intrapulmonary shunt vessels in alveolar capillary dysplasia. J Pediatr 164:192–195

    Article  PubMed  Google Scholar 

  40. Acker SN, Mandell EW, Sims-Lucas S, Gien J, Abman SH, Galambos C (2015) Histologic identification of prominent intrapulmonary anastomotic vessels in severe congenital diaphragmatic hernia. J Pediatr 166:178–183

    Article  PubMed  Google Scholar 

  41. Bush D, Abman SH, Galambos C (2017) Prominent intrapulmonary bronchopulmonary anastomoses and abnormal lung development in infants and children with Down syndrome. J Pediatr 180:156–62.e1

    Article  PubMed  Google Scholar 

  42. McMullan DM, Hanley FL, Cohen GA, Portman MA, Riemer RK (2004) Pulmonary arteriovenous shunting in the normal fetal lung. J Am Coll Cardiol 44:1497–1500

    Article  PubMed  Google Scholar 

  43. Eldridge MW, Dempsey JA, Haverkamp HC, Lovering AT, Hokanson JS (2004) Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. J Appl Physiol 97:797–805

    Article  PubMed  Google Scholar 

  44. Lovering AT, Romer LM, Haverkamp HC, Pegelow DF, Hokanson JS, Eldridge MW (2008) Intrapulmonary shunting and pulmonary gas exchange during normoxic and hypoxic exercise in healthy humans. J Appl Physiol 104:1418–1425

    Article  PubMed  Google Scholar 

  45. Laurie SS, Elliott JE, Goodman RD, Lovering AT (2012) Catecholamine-induced opening of intrapulmonary arteriovenous anastomoses in healthy humans at rest. J Appl Physiol 113:1213–1222

    Article  CAS  PubMed  Google Scholar 

  46. Lovering AT, Elliott JE, Beasley KM, Laurie SS (2010) Pulmonary pathways and mechanisms regulating transpulmonary shunting into the general circulation: an update. Injury 41(Suppl 2):S16–S23

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kimura J, Deutsch GH (2007) Key mechanisms of early lung development. Pediatr Dev Pathol 10:335–347

    Article  CAS  PubMed  Google Scholar 

  48. Dieperink HI, Blackwell TS, Prince LS (2006) Hyperoxia and apoptosis in developing mouse lung mesenchyme. Pediatr Res 59:185–190

    Article  CAS  PubMed  Google Scholar 

  49. Boucherat O, Jeannotte L, Hadchouel A, Delacourt C, Benachi A (2016) Pathomechanisms of congenital cystic lung diseases: focus on congenital cystic adenomatoid malformation and pleuropulmonary blastoma. Paediatr Respir Rev 19:62–68

    PubMed  Google Scholar 

  50. Plopper CG, Alley JL, Weir AJ (1986) Differentiation of tracheal epithelium during fetal lung maturation in the rhesus monkey Macaca mulatta. Am J Anat 175:59–71

    Article  CAS  PubMed  Google Scholar 

  51. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    Article  CAS  PubMed  Google Scholar 

  52. Grier DG, Halliday HL (2004) Effects of glucocorticoids on fetal and neonatal lung development. Treat Respir Med 3:295–306

    Article  CAS  PubMed  Google Scholar 

  53. Karolak JA, Vincent M, Deutsch G, Gambin T, Cogne B, Pichon O et al (2019) Complex compound inheritance of lethal lung developmental disorders due to disruption of the TBX-FGF pathway. Am J Hum Genet 104:213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vincent M, Karolak JA, Deutsch G, Gambin T, Popek E, Isidor B et al (2019) Clinical, histopathological, and molecular diagnostics in lethal lung developmental disorders. Am J Respir Crit Care Med 200:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jobe AH (2011) The new bronchopulmonary dysplasia. Curr Opin Pediatr 23:167–172

    Article  PubMed  PubMed Central  Google Scholar 

  56. Higgins RD, Jobe AH, Koso-Thomas M, Bancalari E, Viscardi RM, Hartert TV et al (2018) Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr 197:300–308

    Article  PubMed  PubMed Central  Google Scholar 

  57. Williams MC, Mason RJ (1977) Development of the type II cell in the fetal rat lung. Am Rev Respir Dis 115:37–47

    CAS  PubMed  Google Scholar 

  58. Stahlman MT, Besnard V, Wert SE, Weaver TE, Dingle S, Xu Y et al (2007) Expression of ABCA3 in developing lung and other tissues. J Histochem Cytochem 55:71–83

    Article  CAS  PubMed  Google Scholar 

  59. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T et al (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Article  PubMed  Google Scholar 

  60. Ribatti D, Vacca A, Nico B, Roncali L, Dammacco F (2001) Postnatal vasculogenesis. Mech Dev 100:157–163

    Article  CAS  PubMed  Google Scholar 

  61. Massaro D, Massaro GD (2002) Invited review: pulmonary alveoli: formation, the “call for oxygen,” and other regulators. Am J Physiol Lung Cell Mol Physiol 282:L345–L358

    Article  CAS  PubMed  Google Scholar 

  62. Lau M, Masood A, Yi M, Belcastro R, Li J, Tanswell AK (2011) Long-term failure of alveologenesis after an early short-term exposure to a PDGF-receptor antagonist. Am J Physiol Lung Cell Mol Physiol 300:L534–L547

    Article  CAS  PubMed  Google Scholar 

  63. Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H et al (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873

    Article  CAS  PubMed  Google Scholar 

  64. Bostrom H, Gritli-Linde A, Betsholtz C (2002) PDGF-A/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn 223:155–162

    Article  CAS  PubMed  Google Scholar 

  65. Dirami G, Massaro GD, Clerch LB, Ryan US, Reczek PR, Massaro D (2004) Lung retinol storing cells synthesize and secrete retinoic acid, an inducer of alveolus formation. Am J Physiol Lung Cell Mol Physiol 286:L249–L256

    Article  CAS  PubMed  Google Scholar 

  66. Galambos C, Minic AD, Bush D, Nguyen D, Dodson B, Seedorf G et al (2016) Increased lung expression of anti-angiogenic factors in Down syndrome: potential role in abnormal lung vascular growth and the risk for pulmonary hypertension. PLoS One 11:e0159005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Whitsett JA, Wert SE, Trapnell BC (2004) Genetic disorders influencing lung formation and function at birth. Hum Mol Genet 13 Spec no. 2:R207–R215

    Google Scholar 

  68. Suhrie K, Pajor NM, Ahlfeld SK, Dawson DB, Dufendach KR, Kitzmiller JA et al (2019) Neonatal lung disease associated with TBX4 mutations. J Pediatr 206:286–92.e1

    Article  PubMed  Google Scholar 

  69. Hara A, Chapin CJ, Ertsey R, Kitterman JA (2005) Changes in fetal lung distension alter expression of vascular endothelial growth factor and its isoforms in developing rat lung. Pediatr Res 58:30–37

    Article  CAS  PubMed  Google Scholar 

  70. Zelzer E, McLean W, Ng YS, Fukai N, Reginato AM, Lovejoy S et al (2002) Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129:1893–1904

    Article  CAS  PubMed  Google Scholar 

  71. Galambos C, Ng YS, Ali A, Noguchi A, Lovejoy S, D’Amore PA et al (2002) Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol 27:194–203

    Article  CAS  PubMed  Google Scholar 

  72. Sirkin W, O’Hare BP, Cox PN, Perrin D, Cutz E, Silver MM (1997) Alveolar capillary dysplasia: lung biopsy diagnosis, nitric oxide responsiveness, and bronchial generation count. Pediatr Pathol Lab Med 17:125–132

    Article  CAS  PubMed  Google Scholar 

  73. Janney CG, Askin FB, Kuhn C III (1981) Congenital alveolar capillary dysplasia – an unusual cause of respiratory distress in the newborn. Am J Clin Pathol 76:722–727

    Article  CAS  PubMed  Google Scholar 

  74. Galambos C, Sims-Lucas S, Ali N, Gien J, Dishop MK, Abman SH (2015) Intrapulmonary vascular shunt pathways in alveolar capillary dysplasia with misalignment of pulmonary veins. Thorax 70:84–85

    Article  PubMed  Google Scholar 

  75. Norvik C, Westoo CK, Peruzzi N, Lovric G, van der Have O, Mokso R et al (2020) Synchrotron-based phase-contrast micro-CT as a tool for understanding pulmonary vascular pathobiology and the 3-D microanatomy of alveolar capillary dysplasia. Am J Physiol Lung Cell Mol Physiol 318:L65–L75

    Article  CAS  PubMed  Google Scholar 

  76. Sen P, Yang Y, Navarro C, Silva I, Szafranski P, Kolodziejska KE et al (2013) Novel FOXF1 mutations in sporadic and familial cases of alveolar capillary dysplasia with misaligned pulmonary veins imply a role for its DNA binding domain. Hum Mutat 34:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pradhan A, Dunn A, Ustiyan V, Bolte C, Wang G, Whitsett JA et al (2019) The S52F FOXF1 mutation inhibits STAT3 signaling and causes alveolar capillary dysplasia. Am J Respir Crit Care Med 200:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kerstjens-Frederikse WS, Bongers EM, Roofthooft MT, Leter EM, Douwes JM, Van Dijk A et al (2013) TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet 50:500–506

    Article  CAS  PubMed  Google Scholar 

  79. Zhu N, Gonzaga-Jauregui C, Welch CL, Ma L, Qi H, King AK et al (2018) Exome sequencing in children with pulmonary arterial hypertension demonstrates differences compared with adults. Circ Genom Precis Med 11:e001887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arora R, Metzger RJ, Papaioannou VE (2012) Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet 8:e1002866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Galambos C, Mullen MP, Shieh JT, Schwerk N, Kielt MJ, Ullmann N et al (2019) Phenotype characterisation of TBX4 mutation and deletion carriers with neonatal and paediatric pulmonary hypertension. Eur Respir J 54:1801965

    Article  CAS  PubMed  Google Scholar 

  82. Cooney TP, Thurlbeck WM (1982) Pulmonary hypoplasia in Down’s syndrome. N Engl J Med 307:1170–1173

    Article  CAS  PubMed  Google Scholar 

  83. Betsy L, Schloo M, Gordon F, Vawter M, Lynn M, Reid M (1990) Down syndrome: patterns of disturbed lung growth. Hum Pathol 22:919–923

    Google Scholar 

  84. Thebaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH et al (2019) Bronchopulmonary dysplasia. Nat Rev Dis Primers 5:78

    Article  PubMed  PubMed Central  Google Scholar 

  85. Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477–2486

    Article  CAS  PubMed  Google Scholar 

  86. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med 164:1971–1980

    Article  CAS  PubMed  Google Scholar 

  87. Lassus P, Turanlahti M, Heikkila P, Andersson LC, Nupponen I, Sarnesto A et al (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164:1981–1987

    Article  CAS  PubMed  Google Scholar 

  88. Itkin M, Chidekel A, Ryan KA, Rabinowitz D (2020) Abnormal pulmonary lymphatic flow in patients with paediatric pulmonary lymphatic disorders: diagnosis and treatment. Paediatr Respir Rev 36:15–24

    PubMed  Google Scholar 

  89. von Kaisenberg CS, Wilting J, Dork T, Nicolaides KH, Meinhold-Heerlein I, Hillemanns P et al (2010) Lymphatic capillary hypoplasia in the skin of fetuses with increased nuchal translucency and Turner’s syndrome: comparison with trisomies and controls. Mol Hum Reprod 16:778–789

    Article  CAS  Google Scholar 

  90. Moerman P, Vandenberghe K, Devlieger H, Van Hole C, Fryns JP, Lauweryns JM (1993) Congenital pulmonary lymphangiectasis with chylothorax: a heterogeneous lymphatic vessel abnormality. Am J Med Genet 47:54–58

    Article  CAS  PubMed  Google Scholar 

  91. Janardhan HP, Trivedi CM (2019) Establishment and maintenance of blood-lymph separation. Cell Mol Life Sci 76:1865–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Bush .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bush, D., Abman, S.H., Galambos, C. (2022). Lung Development. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_294-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_294-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics