Skip to main content

Cardiomyopathies and Acute Myocarditis

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Cardiomyopathies are a heterogeneous group of diseases caused by functional abnormalities of the cardiac muscle. They are generally considered primary or secondary to myocardial involvement of a systemic or multi-organ disease process. Both forms are commonly seen in children, although primary forms predominate. They may be caused by extrinsic or genetic factors. The incidence of cardiomyopathy varies widely according to patient ethnicity. Genetic testing plays an important role in the care of patients with cardiomyopathy and their families because it confirms diagnosis, may determine the appropriate care for the patient, and possibly delineates prognosis. Cardiomyopathies are associated with mechanical and/or electrical dysfunction that usually exhibit inappropriate ventricular hypertrophy or dilation. Cardiomyopathies and myocarditis are significant contributors to end-stage heart failure in children, and the most common indication for ventricular assist device support in childhood. Cases of myocarditis may be unrecognized and go on to experience clinical recovery. Some may be misdiagnosed as sudden infant death syndrome. Others may present years later as a chronic dilated cardiomyopathy with viral genome demonstrated in the myocardium, but in the absence of active inflammation. This chapter will provide an overview of the child with new-onset or established cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 113:1807–1816

    Article  PubMed  Google Scholar 

  2. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 93:841–842

    Article  CAS  PubMed  Google Scholar 

  3. Canter CE, Naftel DC (2007) Recipient characteristics. In: Fine RN, Webber SA, Harmon WE, Kelly DA, Olthoff KM (eds) Pediatric solid organ transplantation, 2nd edn. Blackwell, Malden, pp 259–264

    Chapter  Google Scholar 

  4. Rossano JW, Cherikh WS, Chambers DC, Goldfarb S, Khush K, Kucheryavaya AY, Levvey BJ, Lund LH, Meiser B, Yusen RD, Stehlik J, International Society for H, Lung T (2017) The Registry of the International Society for Heart and Lung Transplantation: Twentieth Pediatric Heart Transplantation Report-2017; Focus Theme: Allograft ischemic time. J Heart Lung Transplant 36:1060–1069

    Article  PubMed  Google Scholar 

  5. Blume ED, Naftel DC, Bastardi HJ, Duncan BW, Kirklin JK, Webber SA et al (2006) Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation 113:2313–2319

    Article  PubMed  Google Scholar 

  6. Villa CR, Khan MS, Zafar F, Morales DLS, Lorts A (2017) United States trends in pediatric ventricular assist implantation as bridge to transplantation. ASAIO J 63:470–475

    Article  PubMed  Google Scholar 

  7. Blume ED, VanderPluym C, Lorts A, Baldwin JT, Rossano JW, Morales DLS, Cantor RS, Miller MA, St Louis JD, Koehl D, Sutcliffe DL, Eghtesady P, Kirklin JK, Rosenthal DN, Pedimacs I (2018) Second annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report: pre-implant characteristics and outcomes. J Heart Lung Transplant 37:38–45

    Article  PubMed  Google Scholar 

  8. Lipshultz SE, Sleeper LA, Towbin JA, Lowe AM, Orav EJ, Cox GF et al (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348:1647–1655

    Article  PubMed  Google Scholar 

  9. Nugent AW, Daubeney PEF, Chondros P, Carlin JB, Cheung M, Wilkinson LC et al (2003) The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 348:1639–1646

    Article  PubMed  Google Scholar 

  10. Rasten-Almqvist P, Eksborg S, Rajs J (2000) Heart weight in infants – a comparison between sudden infant death syndrome and other causes of death. Acta Paediatr 89:1062–1067

    Article  CAS  PubMed  Google Scholar 

  11. Martino TA, Liu P, Sole MJ (1994) Viral infection and the pathogenesis of dilated cardiomyopathy. Circ Res 74:182–188

    Article  CAS  PubMed  Google Scholar 

  12. Fujioka S, Kitaura Y, Ukimura A, Deguchi H, Kawamura K, Isomura T et al (2000) Evaluation of viral infection in the myocardium of patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 36:1920–1926

    Article  CAS  PubMed  Google Scholar 

  13. Fujioka S, Kitaura Y, Deguchi H, Shimizu A, Isomura T, Suma H et al (2004) Evidence of viral infection in the myocardium of American and Japanese patients with idiopathic dilated cardiomyopathy. Am J Cardiol 94:602–605

    Article  PubMed  Google Scholar 

  14. Adachi I, Jaquiss RD (2016) Mechanical circulatory support in children. Curr Cardiol Rev 12:132–140

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H, Thiene G, Towbin JA, Tsatsopoulou A, Wichter T, Zareba W (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J 31:806–814

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin AB, Webber S, Fricker FJ, Jaffe R, Demmler G, Kearney D et al (1994) Acute myocarditis. Rapid diagnosis by PCR in children. Circulation 90:330–339

    Article  CAS  PubMed  Google Scholar 

  17. Towbin JA, Bowles KR, Bowles NE (1999) Etiologies of cardiomyopathy and heart failure. Nat Med 5:266–267

    Article  CAS  PubMed  Google Scholar 

  18. Menon SC, Olson TM, Michels VV (2008) Genetics of familial dilated cardiomyopathy. Prog Pediatr Cardiol 25:57–67

    Article  Google Scholar 

  19. Morales A, Hershberger RE (2013) Genetic evaluation of dilated cardiomyopathy. Curr Cardiol Rep 15:375

    Article  PubMed  Google Scholar 

  20. Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG et al (2003) Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215

    Article  CAS  PubMed  Google Scholar 

  21. Cox GF (2007) Diagnostic approaches to pediatric cardiomyopathy of metabolic genetic etiologies and their relation to therapy. Prog Pediatr Cardiol 24:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  22. Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, Judge DP, Lal AK, Markham LW, Parks WJ, Tsuda T, Wang PJ, Yoo SJ, American Heart Association Pediatric Heart Failure Committee of the Council on Cardiovascular Disease in the Y, Council on Clinical C, Council on Cardiovascular R, Intervention, Council on Functional G, Translational B, Stroke C (2017) Management of cardiac involvement associated with neuromuscular diseases: a scientific statement from the American Heart Association. Circulation 136:e200–e231

    Article  PubMed  Google Scholar 

  23. Sadurska E (2015) Current views on anthracycline cardiotoxicity in childhood cancer survivors. Pediatr Cardiol 36:1112–1119

    Article  PubMed  PubMed Central  Google Scholar 

  24. Suthar D, Dodd DA, Godown J (2018) Identifying non-invasive tools to distinguish acute myocarditis from dilated cardiomyopathy in children. Pediatr Cardiol 39(6):1134–1138

    Article  PubMed  Google Scholar 

  25. Pophal SG, Sigfusson G, Booth KL, Bacanu SA, Webber SA, Ettedgui JA et al (1999) Complications of endomyocardial biopsy in children. J Am Coll Cardiol 34:2105–2110

    Article  CAS  PubMed  Google Scholar 

  26. Mills KI, Vincent JA, Zuckerman WA, Hoffman TM, Canter CE, Marshall AC, Blume ED, Bergersen L, Daly KP (2016) Is endomyocardial biopsy a safe and useful procedure in children with suspected cardiomyopathy? Pediatr Cardiol 37:1200–1210

    Article  PubMed  Google Scholar 

  27. Hill KD, Atkinson JB, Doyle TP, Dodd D (2009) Routine performance of endomyocardial biopsy decreases the incidence of orthotopic heart transplant for myocarditis. J Heart Lung Transplant 28:1261–1266

    Article  PubMed  Google Scholar 

  28. Aretz HT, Billingham ME, Edwards WD, Factor SM, Fallon JT, Fenoglio JJ Jr et al (1987) Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol 1:3–14

    CAS  PubMed  Google Scholar 

  29. Goitein O, Matetzky S, Beinart R, Di Segni E, Hod H, Bentancur A, Konen E (2009) Acute myocarditis: noninvasive evaluation with cardiac MRI and transthoracic echocardiography. AJR Am J Roentgenol 192:254–258

    Article  PubMed  Google Scholar 

  30. Hales-Kharazmi A, Hirsch N, Kelleman M, Slesnick T, Deshpande SR (2018) Utility of cardiac MRI in paediatric myocarditis. Cardiol Young 28:377–385

    Article  PubMed  Google Scholar 

  31. Kishnani PS, BurnsWechsler S, Li JS (2007) Enzyme-deficiency metabolic cardiomyopathies and the role of enzyme replacement therapy. Prog Pediatr Cardiol 23:39–48

    Article  Google Scholar 

  32. Hill KD, Hamid R, Exil VJ (2008) Pediatric cardiomyopathies related to fatty acid metabolism. Prog Pediatr Cardiol 25:69–78

    Article  Google Scholar 

  33. Jefferies JL, Price JF, Denfield SW, Chang AC, Dreyer WJ, McMahon CJ, Grenier MA, Clunie SK, Thomas A, Moffett BS, Wann TS, Smith EO, Towbin JA (2007) Safety and efficacy of nesiritide in pediatric heart failure. J Card Fail 13:541–548

    Article  CAS  PubMed  Google Scholar 

  34. Behera SK, Zuccaro JC, Wetzel GT, Alejos JC (2009) Nesiritide improves hemodynamics in children with dilated cardiomyopathy: a pilot study. Pediatr Cardiol 30:26–34

    Article  PubMed  Google Scholar 

  35. Feingold B, Law YM (2004) Nesiritide use in pediatric patients with congestive heart failure. J Heart Lung Transplant 23:1455–1459

    Article  PubMed  Google Scholar 

  36. Simsic JM, Scheurer M, Tobias JD, Berkenbosch J, Schechter W, Madera F et al (2006) Perioperative effects and safety of nesiritide following cardiac surgery in children. J Intensive Care Med 21:22–26

    Article  PubMed  Google Scholar 

  37. Vilaboa Pedrosa C, Martinez Roca C, Yanez Gomez P, Martin Herranz MI (2015) Experience with levosimendan in 32 paediatric patients. Pediatr Cardiol 36:1038–1041

    Article  PubMed  Google Scholar 

  38. Seguela PE, Mauriat P, Mouton JB, Tafer N, Assy J, Poncelet G, Nubret K, Iriart X, Thambo JB (2015) Single-centred experience with levosimendan in paediatric decompensated dilated cardiomyopathy. Arch Cardiovasc Dis 108:347–355

    Article  PubMed  Google Scholar 

  39. Suominen P, Mattila N, Nyblom O, Rautiainen P, Turanlahti M, Rahkonen O (2017) The hemodynamic effects and safety of repetitive levosimendan infusions on children with dilated cardiomyopathy. World J Pediatr Congenit Heart Surg 8:25–31

    Article  PubMed  Google Scholar 

  40. Shaddy RE, Boucek MM, Hsu DT, Boucek RJ, Canter CE, Mahony L et al (2007) Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 298:1171–1179

    Article  PubMed  Google Scholar 

  41. Shaddy R, Canter C, Halnon N, Kochilas L, Rossano J, Bonnet D, Bush C, Zhao Z, Kantor P, Burch M, Chen F (2017) Design for the sacubitril/valsartan (LCZ696) compared with enalapril study of pediatric patients with heart failure due to systemic left ventricle systolic dysfunction (PANORAMA-HF study). Am Heart J 193:23–34

    Article  PubMed  Google Scholar 

  42. Chen S, Lin A, Liu E, Gowan M, May LJ, Doan LN, Almond CS, Maeda K, Reinhartz O, Hollander SA, Rosenthal DN (2016) Outpatient outcomes of pediatric patients with left ventricular assist devices. ASAIO J 62:163–168

    Article  PubMed  Google Scholar 

  43. Hollander SA, Chen S, Murray JM, Lin A, McBrearty E, Almond CS, Rosenthal DN (2017) Rehospitalization patterns in pediatric outpatients with continuous-flow VADs. ASAIO J 63:476–481

    Article  PubMed  Google Scholar 

  44. Hawkins B, Fynn-Thompson F, Daly KP, Corf M, Blume E, Connor J, Porter C, Almond C, VanderPluym C (2017) The evolution of a pediatric ventricular assist device program: the Boston Children’s Hospital Experience. Pediatr Cardiol 38:1032–1041

    Article  PubMed  Google Scholar 

  45. English RF, Janosky JE, Ettedgui JA, Webber SA (2004) Outcomes for children with acute myocarditis. Cardiol Young 14:488–493

    Article  PubMed  Google Scholar 

  46. Rhee EK, Canter CE, Basile S, Webber SA, Naftel DC (2007) Sudden death prior to pediatric heart transplantation: would implantable defibrillators improve outcome? J Heart Lung Transplant 26:447–452

    Article  PubMed  Google Scholar 

  47. Pahl E, Sleeper LA, Canter CE, Hsu DT, Lu M, Webber SA, Colan SD, Kantor PF, Everitt MD, Towbin JA, Jefferies JL, Kaufman BD, Wilkinson JD, Lipshultz SE (2012) Pediatric cardiomyopathy registry investigators. Incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: a report from the Pediatric cardiomyopathy registry. J Am Coll Cardiol 59(6):607–615

    Article  PubMed  PubMed Central  Google Scholar 

  48. Korte T, Koditz H, Niehaus M, Paul T, Tebbenjohanns J (2004) High incidence of appropriate and inappropriate ICD therapies in children and adolescents with implantable cardioverter defibrillator. Pacing Clin Electrophysiol 27:924–932

    Article  PubMed  Google Scholar 

  49. Daubeney PEF, Nugent AW, Chondros P, Carlin JB, Colan SD, Cheung M et al (2006) Clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation 114:2671–2678

    Article  PubMed  Google Scholar 

  50. Weintraub RG, Nugent AW, Daubeney PEF (2007) Pediatric cardiomyopathy: the Australian experience. Prog Pediatr Cardiol 23:17–24

    Article  Google Scholar 

  51. Alexander PM, Daubeney PE, Nugent AW, Lee KJ, Turner C, Colan SD, Robertson T, Davis AM, Ramsay J, Justo R, Sholler GF, King I, Weintraub RG, National Australian Childhood Cardiomyopathy S (2013) Long-term outcomes of dilated cardiomyopathy diagnosed during childhood: results from a national population-based study of childhood cardiomyopathy. Circulation 128:2039–2046

    Article  PubMed  Google Scholar 

  52. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S et al (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:1867–1876

    Article  CAS  PubMed  Google Scholar 

  53. Wilkinson JD, Sleeper LA, Alvarez JA, Bublik N, Lipshultz SE (2008) The pediatric cardiomyopathy registry: 1995–2007. Prog Pediatr Cardiol 25:31–36

    Article  PubMed  PubMed Central  Google Scholar 

  54. Andrews RE, Fenton MJ, Ridout DA, Burch M, British Congenital Cardiac Association (2008) New-onset heart failure due to heart muscle disease in childhood: a prospective study in the United Kingdom and Ireland. Circulation 117:79–84

    Article  PubMed  Google Scholar 

  55. Alvarez JA, Wilkinson JD, Lipshultz SE (2007) Outcome predictors for pediatric dilated cardiomyopathy: a systematic review. Prog Pediatr Cardiol 23:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alvarez JA, Orav EJ, Wilkinson JD, Fleming LE, Lee DJ, Sleeper LA, Rusconi PG, Colan SD, Hsu DT, Canter CE, Webber SA, Cox GF, Jefferies JL, Towbin JA, Lipshultz SE (2011) Pediatric cardiomyopathy registry investigators. Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. Circulation 124:814–823

    Article  PubMed  PubMed Central  Google Scholar 

  57. Everitt MD, Sleeper LA, Lu M, Canter CE, Pahl E, Wilkinson JD, Addonizio LJ, Towbin JA, Rossano J, Singh RK, Lamour J, Webber SA, Colan SD, Margossian R, Kantor PF, Jefferies JL, Lipshultz SE, Pediatric Cardiomyopathy Registry I (2014) Recovery of echocardiographic function in children with idiopathic dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. J Am Coll Cardiol 63:1405–1413

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu MH, Wu ET, Wang CC, Lu F, Chen HC, Kao FY, Huang SK (2017) Contemporary postnatal incidence of acquiring acute myocarditis by age 15 years and the outcomes from a Nationwide Birth Cohort. Pediatr Crit Care Med 18:1153–1158

    Article  PubMed  Google Scholar 

  59. Bos JM, Towbin JA, Ackerman MJ (2009) Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol 54:201–211

    Article  CAS  PubMed  Google Scholar 

  60. Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121:749–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maron BJ (2004) Hypertrophic cardiomyopathy in childhood. Pediatr Clin N Am 51:1305–1346

    Article  Google Scholar 

  62. Maurizi N, Passantino S, Spaziani G, Girolami F, Arretini A, Targetti M, Pollini I, Tomberli A, Pradella S, Calabri GB, Vinattieri V, Bertaccini B, Leone O, De Simone L, Rapezzi C, Marchionni N, Cecchi F, Favilli S, Olivotto I (2018) Long-term outcomes of pediatric-onset hypertrophic cardiomyopathy and age-specific risk factors for lethal arrhythmic events. JAMA Cardiol 3:520–525

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kubo T, Gimeno JR, Bahl A, Steffensen U, Steffensen M, Osman E et al (2007) Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol 49:2419–2426

    Article  CAS  PubMed  Google Scholar 

  64. Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R et al (2003) Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 111:209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maron BJ (1997) Hypertrophic cardiomyopathy. Lancet 350:127–133

    Article  CAS  PubMed  Google Scholar 

  66. Maron BJ, Haas TS, Ahluwalia A, Murphy CJ, Garberich RF (2016) Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States National Registry. Am J Med 129:1170–1177

    Article  PubMed  Google Scholar 

  67. Dipchand AI, Naftel DC, Feingold B, Spicer R, Yung D, Kaufman B et al (2007) Outcomes of children with cardiomyopathy listed for heart transplant: a multi-institutional study. Circulation 116(II):565

    Google Scholar 

  68. Yano M, Kohno M, Ohkusa T, Mochizuki M, Yamada J, Kohno M et al (2000) Effect of milrinone on left ventricular relaxation and Ca(2+) uptake function of cardiac sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 279:H1898–H1905

    Article  CAS  PubMed  Google Scholar 

  69. Berul CI, Van Hare GF, Kertesz NJ, Dubin AM, Cecchin F, Collins KK et al (2008) Results of a multicenter retrospective implantable cardioverter-defibrillator registry of pediatric and congenital heart disease patients. J Am Coll Cardiol 51:1685–1691

    Article  PubMed  Google Scholar 

  70. Maron BJ, Spirito P, Ackerman MJ, Casey SA, Semsarian C, Estes NA 3rd, Shannon KM, Ashley EA, Day SM, Pacileo G, Formisano F, Devoto E, Anastasakis A, Bos JM, Woo A, Autore C, Pass RH, Boriani G, Garberich RF, Almquist AK, Russell MW, Boni L, Berger S, Maron MS, Link MS (2013) Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol 61(14):1527–1535

    Article  PubMed  Google Scholar 

  71. Lampert R, Olshansky B, Heidbuchel H, Lawless C, Saarel E, Ackerman M, Calkins H, Estes NA, Link MS, Maron BJ, Marcus F, Scheinman M, Wilkoff BL, Zipes DP, Berul CI, Cheng A, Law I, Loomis M, Barth C, Brandt C, Dziura J, Li F, Cannom D (2013) Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry. Circulation 127:2021–2030

    Article  PubMed  Google Scholar 

  72. Towbin JA (1999) Pediatric myocardial disease. Pediatr Clin N Am 46:289–312

    Article  CAS  Google Scholar 

  73. Alexander PMA, Nugent AW, Daubeney PEF, Lee KJ, Sleeper LA, Schuster T, Turner C, Davis AM, Semsarian C, Colan SD, Robertson T, Ramsay J, Justo R, Sholler GF, King I, Weintraub RG, National Australian Childhood Cardiomyopathy S (2018) Long-term outcomes of hypertrophic cardiomyopathy diagnosed during childhood: results from a National Population-Based Study. Circulation 138:29–36

    Article  PubMed  Google Scholar 

  74. Maron BJ, Spirito P (1998) Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol 81:1339–1344

    CAS  PubMed  Google Scholar 

  75. Nugent AW, Daubeney PEF, Chondros P, Carlin JB, Colan SD, Cheung M et al (2005) Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 112:1332–1338

    Article  PubMed  Google Scholar 

  76. Lipshultz SE, Orav EJ, Wilkinson JD, Towbin JA, Messere JE, Lowe AM, Sleeper LA, Cox GF, Hsu DT, Canter CE, Hunter JA, Colan SD, Pediatric Cardiomyopathy Registry Study G (2013) Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet 382:1889–1897

    Article  PubMed  PubMed Central  Google Scholar 

  77. Colan SD, Lipshultz SE, Lowe AM, Sleeper LA, Messere J, Cox GF et al (2007) Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the pediatric cardiomyopathy registry. Circulation 115:773–781

    Article  PubMed  Google Scholar 

  78. Webber SA, Lipshultz SE, Sleeper LA, Lu M, Wilkinson JD, Addonizio LJ, Canter CE, Colan SD, Everitt MD, Jefferies JL, Kantor PF, Lamour JM, Margossian R, Pahl E, Rusconi PG, Towbin JA, Pediatric Cardiomyopathy Registry I (2012) Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation 126:1237–1244

    Article  PubMed  Google Scholar 

  79. Russo LM, Webber SA (2005) Idiopathic restrictive cardiomyopathy in children. Heart 91:1199–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rivenes SM, Kearney DL, Smith EO, Towbin JA, Denfield SW (2000) Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. Circulation 102:876–882

    Article  CAS  PubMed  Google Scholar 

  81. Chen SC, Balfour IC, Jureidini S (2001) Clinical spectrum of restrictive cardiomyopathy in children. J Heart Lung Transplant 20:90–92

    Article  CAS  PubMed  Google Scholar 

  82. Denfield SW, Rosenthal G, Gajarski RJ, Bricker JT, Schowengerdt KO, Price JK et al (1997) Restrictive cardiomyopathies in childhood. Etiologies and natural history. Tex Heart Inst J 24:38–44

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Weller RJ, Weintraub R, Addonizio LJ, Chrisant MRK, Gersony WM, Hsu DT (2002) Outcome of idiopathic restrictive cardiomyopathy in children. Am J Cardiol 90:501–506

    Article  PubMed  Google Scholar 

  84. Kimberling MT, Balzer DT, Hirsch R, Mendeloff E, Huddleston CB, Canter CE (2002) Cardiac transplantation for pediatric restrictive cardiomyopathy: presentation, evaluation, and short-term outcome. J Heart Lung Transplant 21:455–459

    Article  PubMed  Google Scholar 

  85. Cetta F, O’Leary PW, Seward JB, Driscoll DJ (1995) Idiopathic restrictive cardiomyopathy in childhood: diagnostic features and clinical course. Mayo Clin Proc 70:634–640

    Article  CAS  PubMed  Google Scholar 

  86. Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108:2672–2678

    Article  PubMed  Google Scholar 

  87. Towbin JA, Bowles NE (2002) The failing heart. Nature 415:227–233

    Article  CAS  PubMed  Google Scholar 

  88. Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet 386:813–825

    Article  PubMed  Google Scholar 

  89. Bleyl SB, Mumford BR, Brown-Harrison MC, Pagotto LT, Carey JC, Pysher TJ et al (1997) Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet 72:257–265

    Article  CAS  PubMed  Google Scholar 

  90. Spencer CT, Bryant RM, Day J, Gonzalez IL, Colan SD, Thompson WR et al (2006) Cardiac and clinical phenotype in Barth syndrome. Pediatrics 118:e337–e346

    Article  PubMed  Google Scholar 

  91. D’Adamo P, Fassone L, Gedeon A, Janssen EA, Bione S, Bolhuis PA et al (1997) The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 61:862–867

    Article  PubMed  PubMed Central  Google Scholar 

  92. Weiford BC, Subbarao VD, Mulhern KM (2004) Noncompaction of the ventricular myocardium. Circulation 109:2965–2971

    Article  PubMed  Google Scholar 

  93. Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, Ghani S, Sheikh N, Zaidi A, Wilson M, Papadakis M, Carre F, Sharma S (2013) Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart 99:401–408

    Article  CAS  PubMed  Google Scholar 

  94. Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, Sharma R, Thilaganathan B, Sharma S (2014) Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation 130:475–483

    Article  PubMed  Google Scholar 

  95. Ritter M, Oechslin E, Sutsch G, Attenhofer C, Schneider J, Jenni R (1997) Isolated noncompaction of the myocardium in adults. Mayo Clin Proc 72:26–31

    Article  CAS  PubMed  Google Scholar 

  96. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36:493–500

    Article  CAS  PubMed  Google Scholar 

  97. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R (1990) Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82:507–513

    Article  CAS  PubMed  Google Scholar 

  98. Ichida F, Hamamichi Y, Miyawaki T, Ono Y, Kamiya T, Akagi T et al (1999) Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol 34:233–240

    Article  CAS  PubMed  Google Scholar 

  99. Roberts AE, Nixon C, Steward CG, Gauvreau K, Maisenbacher M, Fletcher M, Geva J, Byrne BJ, Spencer CT (2012) The Barth Syndrome Registry: distinguishing disease characteristics and growth data from a longitudinal study. Am J Med Genet A 158A:2726–2732

    Article  PubMed  Google Scholar 

  100. Rigaud C, Lebre AS, Touraine R, Beaupain B, Ottolenghi C, Chabli A, Ansquer H, Ozsahin H, Di Filippo S, De Lonlay P, Borm B, Rivier F, Vaillant MC, Mathieu-Dramard M, Goldenberg A, Viot G, Charron P, Rio M, Bonnet D, Donadieu J (2013) Natural history of Barth syndrome: a national cohort study of 22 patients. Orphanet J Rare Dis 8:70

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ et al (2008) Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J 29:89–95

    Article  PubMed  Google Scholar 

  103. Soler R, Rodriguez E, Monserrat L, Alvarez N (2002) MRI of subendocardial perfusion deficits in isolated left ventricular noncompaction. J Comput Assist Tomogr 26:373–375

    Article  PubMed  Google Scholar 

  104. Jefferies JL, Wilkinson JD, Sleeper LA, Colan SD, Lu M, Pahl E, Kantor PF, Everitt MD, Webber SA, Kaufman BD, Lamour JM, Canter CE, Hsu DT, Addonizio LJ, Lipshultz SE, Towbin JA, Pediatric Cardiomyopathy Registry I (2015) Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the Pediatric Cardiomyopathy Registry. J Card Fail 21:877–884

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Godown .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Godown, J., Feingold, B., Webber, S.A. (2021). Cardiomyopathies and Acute Myocarditis. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_230-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_230-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics