Skip to main content

Structural Heart Disease in the Fetus

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Congenital heart defects can be diagnosed by ultrasound during fetal life with a high degree of diagnostic accuracy at specialist centers. Cardiac defects characterized by an abnormal four-chamber view of the heart have higher detection rates than those lesions which depend on views of the outflow tracts for their detection. Prenatal detection allows appropriate preparation for delivery and for the prenatal identification of associated anomalies. Prediction of babies who will require emergency postnatal intervention means that planning the site of delivery and emergency management is facilitated. There is evidence that postnatal outcome may be improved by prenatal diagnosis of some cardiac lesions including hypoplastic left heart syndrome, transposition of the great arteries, and coarctation of the aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Allan LD, Sharland GK, Milburn A et al (1994) Prospective diagnosis of 1,006 consecutive cases of congenital heart disease in the fetus. J Am Coll Cardiol 23:1452–1458

    CAS  PubMed  Google Scholar 

  2. Hyett J, Perdu M, Sharland G, Snijders R, Nicolaides KH (1999) Using fetal nuchal translucency to screen for major congenital cardiac defects at 10–14 weeks of gestation: population based cohort study. BMJ 318:81–85

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Makrydimas G, Sotiriadis A, Huggon IC et al (2005) Nuchal translucency and fetal cardiac defects: a pooled analysis of major fetal echocardiography centers. Am J Obstet Gynecol 192:89–95

    PubMed  Google Scholar 

  4. Yagel S, Arbel R, Anteby EY, Raveh D, Achiron R (2002) The three vessels and trachea view (3VT) in fetal cardiac scanning. Ultrasound Obstet Gynecol 20:340–345

    CAS  PubMed  Google Scholar 

  5. Yagel S, Cohen SM, Achiron R (2001) Examination of the fetal heart by five short-axis views: a proposed screening method for comprehensive cardiac evaluation. Ultrasound Obstet Gynecol 17:367–369

    CAS  PubMed  Google Scholar 

  6. Sharland G (2010) Fetal cardiac screening: why bother? Arch Dis Child Fetal Neonatal Ed 95:F64–F68

    CAS  PubMed  Google Scholar 

  7. Lee W, Allan L, Carvalho JS et al (2008) ISUOG consensus statement: what constitutes a fetal echocardiogram? Ultrasound Obstet Gynecol 32:239–242

    CAS  PubMed  Google Scholar 

  8. Rychik J, Ayres N, Cuneo B et al (2004) American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J Am Soc Echocardiogr 17:803–810

    PubMed  Google Scholar 

  9. Allan L, Dangel J, Fesslova V et al (2004) Recommendations for the practice of fetal cardiology in Europe. Cardiol Young 14:109–114

    PubMed  Google Scholar 

  10. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, Cuneo BF, Huhta JC, Jonas RA, Krishnan A, Lacey S, Lee W, Michelfelder EC Sr, Rempel GR, Silverman NH, Spray TL, Strasburger JF, Tworetzky W, Rychik J, American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129(21):2183–2242. https://doi.org/10.1161/01.cir.0000437597.44550.5d. Epub 2014 Apr 24. Review

    Article  PubMed  Google Scholar 

  11. Ghi T, Huggon IC, Zosmer N, Nicolaides KH (2001) Incidence of major structural cardiac defects associated with increased nuchal translucency but normal karyotype. Ultrasound Obstet Gynecol 18:610–614

    CAS  PubMed  Google Scholar 

  12. Simpson LL, Malone FD, Bianchi DW et al (2007) Nuchal translucency and the risk of congenital heart disease. Obstet Gynecol 109:376–383

    PubMed  Google Scholar 

  13. Maiz N, Plasencia W, Dagklis T, Faros E, Nicolaides K (2008) Ductus venosus Doppler in fetuses with cardiac defects and increased nuchal translucency thickness. Ultrasound Obstet Gynecol 31:256–260

    CAS  PubMed  Google Scholar 

  14. Benn P, Cuckle H, Pergament E (2013) Non-invasive prenatal testing for aneuploidy: current status and future prospects. Ultrasound Obstet Gynecol 42(1):15–33. https://doi.org/10.1002/uog.12513. Review

    Article  CAS  PubMed  Google Scholar 

  15. Jansen FA, Blumenfeld YJ, Fisher A, Cobben JM, Odibo AO, Borrell A, Haak MC (2015) Array comparative genomic hybridization and fetal congenital heart defects: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45(1):27–35. https://doi.org/10.1002/uog.14695

    Article  CAS  PubMed  Google Scholar 

  16. Simpson JM (2009) Impact of fetal echocardiography. Ann Pediatr Cardiol 2:41–50

    PubMed  PubMed Central  Google Scholar 

  17. Simpson JM, Sharland GK (1997) Natural history and outcome of aortic stenosis diagnosed prenatally. Heart 77:205–210

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tworetzky W, Wilkins-Haug L, Jennings RW et al (2004) Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation 110:2125–2131

    PubMed  Google Scholar 

  19. Moon-Grady AJ, Morris SA, Belfort M, Chmait R, Dangel J, Devlieger R, Emery S, Frommelt M, Galindo A, Gelehrter S, Gembruch U, Grinenco S, Habli M, Herberg U, Jaeggi E, Kilby M, Kontopoulos E, Marantz P, Miller O, Otaño L, Pedra C, Pedra S, Pruetz J, Quintero R, Ryan G, Sharland G, Simpson J, Vlastos E, Tworetzky W, Wilkins-Haug L, Oepkes D, International Fetal Cardiac Intervention Registry (2015) International Fetal Cardiac Intervention Registry: a worldwide collaborative description and preliminary outcomes. J Am Coll Cardiol 66(4):388–399

    PubMed  Google Scholar 

  20. Gardiner HM, Kovacevic A, Tulzer G, Sarkola T, Herberg U, Dangel J, Öhman A, Bartrons J, Carvalho JS, Jicinska H, Fesslova V, Averiss I, Mellander M, Fetal Working Group of the AEPC (2016) Natural history of 107 cases of fetal aortic stenosis from a European multicenter retrospective study. Ultrasound Obstet Gynecol 48(3):373–381

    CAS  PubMed  Google Scholar 

  21. Hunter LE, Chubb H, Miller O, Sharland G, Simpson JM (2015) Fetal aortic valve stenosis: a critique of case selection criteria for fetal intervention. Prenat Diagn 35(12):1176–1181

    PubMed  Google Scholar 

  22. Michelfelder E, Gomez C, Border W, Gottliebson W, Franklin C (2005) Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial septoplasty in the newborn with hypoplastic left ventricle. Circulation 112:2974–2979

    PubMed  Google Scholar 

  23. Rychik J, Rome JJ, Collins MH, DeCampli WM, Spray TL (1999) The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol 34:554–560

    CAS  PubMed  Google Scholar 

  24. Marshall AC, van der Velde ME, Tworetzky W et al (2004) Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation 110:253–258

    PubMed  Google Scholar 

  25. Jantzen DW, Moon-Grady AJ, Morris SA, Armstrong AK, Berg C, Dangel J, Fifer CG, Frommelt M, Gembruch U, Herberg U, Jaeggi E, Kontopoulos EV, Marshall AC, Miller O, Oberhoffer R, Oepkes D, Pedra CA, Pedra SR, Peralta F, Quintero RA, Ryan G, Gelehrter SK (2017) Hypoplastic left heart syndrome with intact or restrictive atrial septum: a report from the International Fetal Cardiac Intervention Registry. Circulation 136(14):1346–1349

    PubMed  Google Scholar 

  26. Divanović A, Hor K, Cnota J, Hirsch R, Kinsel-Ziter M, Michelfelder E (2011) Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis. J Thorac Cardiovasc Surg 141(4):988–994

    PubMed  Google Scholar 

  27. Saul D, Degenhardt K, Iyoob SD, Surrey LF, Johnson AM, Johnson MP, Rychik J, Victoria T (2016) Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator? Pediatr Radiol 46(4):483–489. https://doi.org/10.1007/s00247-015-3514-6. Epub 2015 Dec 21

    Article  PubMed  Google Scholar 

  28. Hornberger LK, Sahn DJ, Kleinman CS, Copel J, Silverman NH (1994) Antenatal diagnosis of coarctation of the aorta: a multicenter experience. J Am Coll Cardiol 23:417–423

    CAS  PubMed  Google Scholar 

  29. Sharland GK, Chan KY, Allan LD (1994) Coarctation of the aorta: difficulties in prenatal diagnosis. Br Heart J 71:70–75

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pasquini L, Mellander M, Seale A et al (2007) Z-scores of the fetal aortic isthmus and duct: an aid to assessing arch hypoplasia. Ultrasound Obstet Gynecol 29:628–633

    CAS  PubMed  Google Scholar 

  31. Lloyd DF, van Amerom JF, Pushparajah K, Simpson JM, Zidere V, Miller O, Sharland G, Allsop J, Fox M, Lohezic M, Murgasova M, Malamateniou C, Hajnal JV, Rutherford M, Razavi R (2016) An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenat Diagn 36(10):916–925

    PubMed  PubMed Central  Google Scholar 

  32. Head CE, Jowett VC, Sharland GK, Simpson JM (2005) Timing of presentation and postnatal outcome of infants suspected of having coarctation of the aorta during fetal life. Heart 91:1070–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng S, Zhou J, Peng Q, Deng W, Zhang M, Zhao Y, Wang T, Zhou Q (2016) Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep 6:39304. https://doi.org/10.1038/srep39304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miranda JO, Hunter L, Tibby S, Sharland G, Miller O, Simpson JM (2017) Myocardial deformation in fetuses with coarctation of the aorta: a case-control study. Ultrasound Obstet Gynecol 49(5):623–629

    CAS  PubMed  Google Scholar 

  35. Zeng S, Zhou J, Peng Q, Deng W, Zang M, Wang T, Zhou Q (2017) Sustained chronic maternal hyperoxygenation increases myocardial deformation in fetuses with a small aortic isthmus at risk for coarctation. J Am Soc Echocardiogr 30(10):992–1000. https://doi.org/10.1016/j.echo.2017.05.008. Epub 2017 Jun 28

    Article  PubMed  Google Scholar 

  36. Berg C, Lachmann R, Kaiser C et al (2010) Prenatal diagnosis of tricuspid atresia: intrauterine course and outcome. Ultrasound Obstet Gynecol 35:183–190

    CAS  PubMed  Google Scholar 

  37. Gardiner HM, Belmar C, Tulzer G et al (2008) Morphologic and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J Am Coll Cardiol 51:1299–1308

    PubMed  Google Scholar 

  38. Salvin JW, McElhinney DB, Colan SD et al (2006) Fetal tricuspid valve size and growth as predictors of outcome in pulmonary atresia with intact ventricular septum. Pediatrics 118:e415–e420

    PubMed  Google Scholar 

  39. Lowenthal A, Lemley B, Kipps AK, Brook MM, Moon-Grady AJ (2014) Prenatal tricuspid valve size as a predictor of postnatal outcome in patients with severe pulmonarystenosis or pulmonary atresia with intact ventricular septum. Fetal Diagn Ther 35(2):101–107

    PubMed  Google Scholar 

  40. Andrews RE, Tibby SM, Sharland GK, Simpson JM (2008) Prediction of outcome of tricuspid valve malformations diagnosed during fetal life. Am J Cardiol 101:1046–1050

    PubMed  Google Scholar 

  41. Bull C (1999) Current and potential impact of fetal diagnosis on prevalence and spectrum of serious congenital heart disease at term in the UK. British Paediatric Cardiac Association. Lancet 354:1242–1247

    CAS  PubMed  Google Scholar 

  42. Pascal CJ, Huggon I, Sharland GK, Simpson JM (2007) An echocardiographic study of diagnostic accuracy, prediction of surgical approach, and outcome for fetuses diagnosed with discordant ventriculo-arterial connections. Cardiol Young 17:528–534

    PubMed  Google Scholar 

  43. Bonnet D, Coltri A, Butera G et al (1999) Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 99:916–918

    CAS  PubMed  Google Scholar 

  44. Jouannic JM, Gavard L, Fermont L et al (2004) Sensitivity and specificity of prenatal features of physiological shunts to predict neonatal clinical status in transposition of the great arteries. Circulation 110:1743–1746

    PubMed  Google Scholar 

  45. Vigneswaran TV, Zidere V, Miller OI, Simpson JM, Sharland GK (2017) Usefulness of the prenatal echocardiogram in fetuses with isolated transposition of the great arteries to predict the need for balloon atrial septostomy. Am J Cardiol 119(9):1463–1467

    PubMed  Google Scholar 

  46. Duke C, Sharland GK, Jones AM, Simpson JM (2001) Echocardiographic features and outcome of truncus arteriosus diagnosed during fetal life. Am J Cardiol 88:1379–1384

    CAS  PubMed  Google Scholar 

  47. Tometzki AJ, Suda K, Kohl T, Kovalchin JP, Silverman NH (1999) Accuracy of prenatal echocardiographic diagnosis and prognosis of fetuses with conotruncal anomalies. J Am Coll Cardiol 33:1696–1701

    CAS  PubMed  Google Scholar 

  48. Chaoui R, Kalache KD, Heling KS, Tennstedt C, Bommer C, Korner H (2002) Absent or hypoplastic thymus on ultrasound: a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol 20:546–552

    CAS  PubMed  Google Scholar 

  49. Pepas LP, Savis A, Jones A, Sharland GK, Tulloh RM, Simpson JM (2003) An echocardiographic study of tetralogy of Fallot in the fetus and infant. Cardiol Young 13:240–247

    PubMed  Google Scholar 

  50. Zidere V, Tsapakis EG, Huggon IC, Allan LD (2006) Right aortic arch in the fetus. Ultrasound Obstet Gynecol 28:876–881

    CAS  PubMed  Google Scholar 

  51. Vesel S, Rollings S, Jones A, Callaghan N, Simpson J, Sharland GK (2006) Prenatally diagnosed pulmonary atresia with ventricular septal defect: echocardiography, genetics, associated anomalies and outcome. Heart 92:1501–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Razavi RS, Sharland GK, Simpson JM (2003) Prenatal diagnosis by echocardiogram and outcome of absent pulmonary valve syndrome. Am J Cardiol 91:429–432

    PubMed  Google Scholar 

  53. Axt-Fliedner R, Kurkevych A, Slodki M, Respondek-Liberska M, Zych-Krekora K, Stressig R, Ritgen J, Rizzo G, Krapp M, de Catte L, Mielke G, Bosselmann S, Meyer-Wittkopf M, Kawecki A, Wolter A, Mamalis M, Enzensberger C, International Prenatal Cardiology Collaboration Group (2017) Absent pulmonary valve syndrome – diagnosis, associations, and outcome in 71 prenatally diagnosed cases. Prenat Diagn 37(8):812–819. https://doi.org/10.1002/pd.5094. Epub 2017 Jul 12

    Article  PubMed  Google Scholar 

  54. Seale AN, Carvalho JS, Gardiner HM, Mellander M, Roughton M, Simpson J, Tometzki A, Uzun O, Webber SA, Daubeney PE (2012) British Congenital Cardiac Association. Total anomalous pulmonary venous connection: impact of prenatal diagnosis. Ultrasound Obstet Gynecol 40(3):310–8. https://doi.org/10.1002/uog.11093. PMID: 22262371

  55. Familiari A, Morlando M, Khalil A, Sonesson SE, Scala C, Rizzo G, Del Sordo G, Vassallo C, Elena Flacco M, Manzoli L, Lanzone A, Scambia G, Acharya G, D’Antonio F (2017) Risk factors for coarctation of the aorta on prenatal ultrasound: a systematic review and meta-analysis. Circulation 135(8):772–785. https://doi.org/10.1161/CIRCULATIONAHA.116.024068. Epub 2016 Dec 29. Review

    Article  PubMed  Google Scholar 

  56. Donofrio MT (2018) Predicting the future: delivery room planning of congenital heart disease diagnosed by fetal echocardiography. Am J Perinatol 35(6):549–552

    PubMed  Google Scholar 

  57. Peyvandi S, Nguyen TA, Almeida-Jones M, Boe N, Rhee L, Anton T, Sklansky M, Tarsa M, Satou G, Moon-Grady AJ, University of California Fetal Consortium (UCfC) (2017) Timing and mode of delivery in prenatally diagnosed congenital heart disease- an analysis of practices within the University of California Fetal Consortium (UCfC). Pediatr Cardiol 38(3):588–595. https://doi.org/10.1007/s00246-016-1552-y. Epub 2017 Jan 11

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cnota JF, Gupta R, Michelfelder EC, Ittenbach RF (2011) Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks. J Pediatr 159(5):761–765. https://doi.org/10.1016/j.jpeds.2011.04.020. Epub 2011 Jun 15

    Article  PubMed  Google Scholar 

  59. Tworetzky W, McElhinney DB, Reddy VM, Brook MM, Hanley FL, Silverman NH (2001) Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome. Circulation 103:1269–1273

    CAS  PubMed  Google Scholar 

  60. Kumar RK, Newburger JW, Gauvreau K, Kamenir SA, Hornberger LK (1999) Comparison of outcome when hypoplastic left heart syndrome and transposition of the great arteries are diagnosed prenatally versus when diagnosis of these two conditions is made only postnatally. Am J Cardiol 83:1649–1653

    CAS  PubMed  Google Scholar 

  61. Mahle WT, Clancy RR, McGaurn SP, Goin JE, Clark BJ (2001) Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics 107:1277–1282

    CAS  PubMed  Google Scholar 

  62. Franklin O, Burch M, Manning N, Sleeman K, Gould S, Archer N (2002) Prenatal diagnosis of coarctation of the aorta improves survival and reduces morbidity. Heart 87:67–69

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Abu-Harb M, Hey E, Wren C (1994) Death in infancy from unrecognised congenital heart disease. Arch Dis Child 71:3–7

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tzifa A, Barker C, Tibby SM, Simpson JM (2007) Prenatal diagnosis of pulmonary atresia: impact on clinical presentation and early outcome. Arch Dis Child Fetal Neonatal Ed 92:F199–F203

    PubMed  Google Scholar 

  65. Peyvandi S, Latal B, Miller SP, McQuillen PS (2019) The neonatal brain in critical congenital heart disease: Insights and future directions. Neuroimage 185:776–782. https://doi.org/10.1016/j.neuroimage.2018.05.045. Epub 2018 May 19. PMID: 29787864

  66. Nattel SN, Adrianzen L, Kessler EC, Andelfinger G, Dehaes M, Côté-Corriveau G, Trelles MP (2017) Congenital heart disease and neurodevelopment: clinical manifestations, genetics, mechanisms, and implications. Can J Cardiol 33(12):1543–1555

    PubMed  Google Scholar 

  67. De Asis-Cruz J, Donofrio MT, Vezina G, Limperopoulos C (2017) Aberrant brain functional connectivity in newborns with congenital heart disease before cardiac surgery. Neuroimage Clin 17:31–42

    PubMed  PubMed Central  Google Scholar 

  68. Claessens NHP, Kelly CJ, Counsell SJ, Benders MJNL (2017) Neuroimaging, cardiovascular physiology, and functional outcomes in infants with congenital heart disease. Dev Med Child Neurol 59(9):894–890

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Simpson .

Editor information

Editors and Affiliations

Section Editor information

Electronic Supplementary Material

Video 1

a, b (MP4 2604 kb)

Video 2

(MP4 1768 kb)

Video 3

(MP4 1800 kb)

Video 4

(MP4 1787 kb)

Video 5

(MP4 1867 kb)

Video 6

(MP4 157 kb)

Video 7a

(MP4 1865 kb)

Video 7b

(MP4 1787 kb)

Video 8a

(MP4 1866 kb)

Video 8b

(MP4 1882 kb)

Video 8c

(MP4 1866 kb)

Video 9a

(MP4 2008 kb)

(MP4 1971 kb)

Video 10a

(MP4 1870 kb)

Video 10b

(MP4 1867 kb)

Video 11a

(MP4 1150 kb)

Video 11b

(MP4 1865 kb)

Video 12a

(MP4 2625 kb)

Video 12b

(MP4 1620 kb)

Video 12c

(MP4 199 kb)

Video 13

(MP4 1798 kb)

(MP4 2010 kb)

Video 15

(MP4 2658 kb)

Video 16

(MP4 2583 kb)

Video 17a

(MP4 1867 kb)

Video 17b

(MP4 1861 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Simpson, J.M., Jones, C.B. (2021). Structural Heart Disease in the Fetus. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_156-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_156-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics