Skip to main content

Transformation-Based Cloak/Anti-Cloak Interactions: A Review

  • Chapter
  • First Online:
Transformation Electromagnetics and Metamaterials

Abstract

The intriguing concept of “anti-cloaking” was originally introduced within the framework of transformation optics (TO) as a “countermeasure” to invisibility-cloaking, i.e., to restore the scattering response of a cloaked target. More recently, its relevance was also suggested in applications to “sensor invisibility,” i.e., to strongly reduce the scattering response while maintaining the field-sensing capabilities. In this chapter, we review our recent studies on two-dimensional (cylindrical) and three-dimensional (spherical) canonical scenarios. More specifically, via generalized (coordinate-mapped) Bessel-Fourier and Mie-series approaches, we address the analytical study of plane-wave-excited configurations featuring a cylindrical or spherical object surrounded by a TO-based invisibility cloak coupled to an anti-cloak via a vacuum layer, and explore the various interactions of interest. Via a number of selected examples, we illustrate the cloaking and field-restoring capabilities of various configurations, with special emphasis on the scattering versus absorption tradeoff, as well as possible ideas for approximate implementations that do not require the use of double-negative media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780. doi:10.1126/science.1126493

    Article  MathSciNet  MATH  Google Scholar 

  2. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782. doi:10.1126/science.1125907

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen HY, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nature Mater 9:387–396. doi:10.1038/nmat2743

    Article  Google Scholar 

  4. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980. doi:10.1126/science.1133628

    Article  Google Scholar 

  5. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nature Photon 1:224–227. doi:10.1038/nphoton.2007.28

    Article  Google Scholar 

  6. Alù A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72:016623. doi:10.1103/PhysRevE.72.016623

    Article  Google Scholar 

  7. Milton GW, Nicorovici NAP (2006) On the cloaking effects associated with anomalous localized resonance. Proc Roy Soc A 462:3027–3059. doi:10.1098/rspa.2006.1715

    Article  MathSciNet  MATH  Google Scholar 

  8. Hakansson A (2007) Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements. Opt Express 15:4328–4334. doi:10.1364/OE.15.004328

    Article  Google Scholar 

  9. Alitalo P, Luukkonen O, Jylha L, Venermo J, Tretyakov SA (2008) Transmission-line networks cloaking objects from electromagnetic fields. IEEE Trans Antennas Propagat 56:416–424. doi:10.1109/TAP.2007.915469

    Article  Google Scholar 

  10. Silveirinha MG, Alù A, Engheta N (2008) Cloaking mechanism with antiphase plasmonic satellites. Phys Rev B 78:205109. doi:10.1103/PhysRevB.78.205109

    Article  Google Scholar 

  11. Alù A (2009) Mantle cloak: invisibility induced by a surface. Phys Rev B 80:245115. doi:10.1103/PhysRevB.80.245115

    Article  Google Scholar 

  12. Edwards B, Alù A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901. doi:10.1103/PhysRevLett.103.153901

    Article  Google Scholar 

  13. Alitalo P, Bongard F, Zuercher J-F, Mosig J, Tretyakov S (2009) Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks. Appl Phys Lett 94:014103. doi:10.1063/1.3068749

    Article  Google Scholar 

  14. Alù A, Engheta N (2008) Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A: Pure Appl Opt 10:093002. doi:10.1088/1464-4258/10/9/093002

    Article  Google Scholar 

  15. Alitalo P, Kettunen H, Tretyakov S (2010) Cloaking a metal object from an electromagnetic pulse: a comparison between various cloaking techniques. J Appl Phys 107:034905. doi:10.1063/1.3305322

    Article  Google Scholar 

  16. Ruan Z, Yan M, Neff CW, Qiu M (2007) Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys Rev Lett 99:113903. doi:10.1103/PhysRevLett.99.113903

    Article  Google Scholar 

  17. Zhang B, Chen H, Wu B-I, Luo Y, Ran L, Kong JA (2007) Response of a cylindrical invisibility cloak to electromagnetic waves. Phys Rev B 76:121101. doi:10.1103/PhysRevB.76.121101

    Article  Google Scholar 

  18. Chen H, Wu B-I, Zhang B, Kong JA (2007) Electromagnetic wave interactions with a metamaterial cloak. Phys Rev Lett 99:063903. doi:10.1103/PhysRevLett.99.063903

    Article  Google Scholar 

  19. Zhang B, Chen H, Wu B-I, Kong JA (2008) Extraordinary surface voltage effect in the invisibility cloak with an active device inside. Phys Rev Lett 100:063904. doi:10.1103/PhysRevLett.100.063904

    Article  Google Scholar 

  20. Chen H, Luo X, Ma H, Chan CT (2008) The anti-cloak. Opt Express 16:14603–14608. doi:10.1364/OE.16.014603

    Article  Google Scholar 

  21. Castaldi G, Gallina I, Galdi V, Alù A, Engheta N (2009) Cloak/anti-cloak interactions. Opt Express 17:3101–3114. doi:10.1364/OE.17.003101

    Article  Google Scholar 

  22. Castaldi G, Gallina I, Galdi V, Alù A, Engheta N (2010) Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route towards invisible sensors. J Opt Soc Am B 27:2132–2140. doi:10.1364/JOSAB.27.002132

    Article  Google Scholar 

  23. Castaldi G, Gallina I, Galdi V, Alù A, Engheta N (2011) Analytical study of spherical cloak/anti-cloak interactions. Wave Motion 48:455–467. doi:10.1016/j.wavemoti.2011.03.003

    Article  MathSciNet  Google Scholar 

  24. Alù A, Engheta N (2009) Cloaking a sensor. Phys Rev Lett 102:233901. doi:10.1103/PhysRevLett.102.233901

    Article  Google Scholar 

  25. Ruan Z, Fan S (2010) Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle. J Phys Chem C 114:7324–7329. doi:10.1021/jp9089722

    Article  Google Scholar 

  26. Greenleaf A, Kurylev Y, Lassas M, Uhlmann G (2011) Cloaking a sensor via transformation optics. Phys Rev E 83:016603. doi:10.1103/PhysRevE.83.016603

    Article  MathSciNet  Google Scholar 

  27. Chen XD, Uhlmann G (2011) Cloaking a sensor for three-dimensional Maxwell’s equations: transformation optics approach. Opt Express 19:20518–20530. doi:10.1364/OE.19.020518

    Article  Google Scholar 

  28. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions, Ninth printing. Dover, New York

    Google Scholar 

  29. Luo Y, Chen H, Zhang J, Ran L, Kong JA (2008) Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Phys Rev B 77:125127. doi:10.1103/PhysRevB.77.125127

    Article  Google Scholar 

  30. Yang T, Chen H, Luo X, Ma H (2008) Superscatterer: enhancement of scattering with complementary media. Opt Express 16:18545–18550. doi:10.1364/OE.16.018545

    Article  Google Scholar 

  31. Ng J, Chen H, Chan CT (2009) Metamaterial frequency-selective superabsorber. Opt Lett 34:644–646. doi:10.1364/OL.34.000644

    Article  Google Scholar 

  32. Harrington RF (2001) Time-harmonic electromagnetic fields. IEEE Press-Wiley Interscience, Piscataway, NJ

    Google Scholar 

  33. Gallina I, Castaldi G, Galdi V, Alù A, Engheta N (2010) General class of metamaterial transformation slabs. Phys Rev B 8:125124. doi:10.1103/PhysRevB.81.125124

    Article  Google Scholar 

  34. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB (2008) Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photon Nanostruct 6:87–95. doi:10.1016/j.photonics.2007.07.013

    Article  Google Scholar 

  35. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    MATH  Google Scholar 

  36. Luo Y, Zhang J, Chen H, Xi S, Wu B-I (2008) Cylindrical cloak with axial permittivity/permeability spatially invariant. Appl Phys Lett 93:033504. doi:10.1063/1.2953433

    Article  Google Scholar 

  37. Cai W, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105. doi:10.1063/1.2783266

    Article  Google Scholar 

  38. Castaldi G, Gallina I, Galdi V (2009) Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies. Phys Rev B 80:125116. doi:10.1103/PhysRevB.80.125116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Alù .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Castaldi, G., Galdi, V., Alù, A., Engheta, N. (2014). Transformation-Based Cloak/Anti-Cloak Interactions: A Review. In: Werner, D., Kwon, DH. (eds) Transformation Electromagnetics and Metamaterials. Springer, London. https://doi.org/10.1007/978-1-4471-4996-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4996-5_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4995-8

  • Online ISBN: 978-1-4471-4996-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics