Skip to main content

Machining Dynamics in Manufacturing

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology
  • 657 Accesses

Abstract

Machining dynamics has been a critical academic and industrial discipline to determine a chatter-free cutting condition as well as to provide an insight into the vibration-resistant design of a machining system. This article presents the introduction, the modeling of machining dynamics in frequency and time domain, the simulation examples, and the application of machining dynamics into industries. The advantage of the frequency-domain solution is to rapidly generate stability lobes over the wide range of spindle speed and cutting depths and avoid computationally costly numerical solutions at the expense of ignoring the nonlinearities in comparison to the time-domain solutions. The time-domain model allows prediction of cutting forces, torque, and vibrations during machining, which is essential in planning the operations without overloading the tool, machine, and workpiece for a given set of cutting conditions. The time-domain simulation estimates the physics of the processes and allows the analysis of time-varying parameters, by incorporating the nonlinearities caused by material behavior, and tool geometry variations along the cutting edge. Both models can provide a map of chatter-free cutting conditions and a fundamental guide for process planners. Engineers can use the simulations to perform the analysis of various tool geometry, cutter-part engagement, and cutting conditions and avoid chatter vibrations. Finally, this article shows the actual application of the models into machining industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altintas Y, Ko JH (2006) Chatter stability of plunge milling. CIRP Ann 55(1):361–364

    Article  Google Scholar 

  • Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. ASME J Manuf Sci Eng 125:220–225

    Article  Google Scholar 

  • Budak E, Altintas Y (1998a) Analytical prediction of chatter stability in milling-part I: general formulation. ASME J Dyn Sys Meas Control 120(1):22–30

    Article  Google Scholar 

  • Budak E, Altintas Y (1998b) Analytical prediction of chatter stability in milling- part II: application of the general formulation to common milling systems. ASME J Dyn Sys Meas Control 120(1):31–36

    Article  Google Scholar 

  • Davies M, Pratt JR, Dutterer B, Burns TJ (2000) The stability of low radial immersion milling. CIRP Ann 49(1):37–40

    Article  Google Scholar 

  • Insberger T, Stepan G (2000) Stability of the milling process. Period Polytech- Mech Eng 44(1):47–57

    Google Scholar 

  • Ko JH, Altitntas Y (2007a) Dynamics and stability of plunge milling operation. ASME J Manuf Sci Eng 129(1):32–40

    Article  Google Scholar 

  • Ko JH, Altitntas Y (2007b) Time domain model of plunge milling operation. Int J Mach Tool Manufact 47(9):1351–1361

    Article  Google Scholar 

  • Ko JH, Cho DW (2005) 3D ball-end milling force model using instantaneous cutting force coefficients. Trans ASME J Manufact Sci Eng 127(1):1–12, Citation 24

    Article  Google Scholar 

  • Ko JH, Shaw KC (2009) Chatter prediction in frequency domain for pocket milling. Int J Precis Eng Manufact 10(4):19–25

    Article  Google Scholar 

  • Ko JH, Yun WS, Cho DW (2003) Off-line feed rate scheduling using virtual CNC based on an evaluation of cutting performance. Comput Aided Des 35(4):383–393

    Article  Google Scholar 

  • Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. ASME J Manuf Sci Eng 126(3):459–466

    Article  Google Scholar 

  • Minis I, Yanushevsky T (1993) A new theoretical approach for the prediction of machine tool chatter in milling. ASME J Eng Ind 115(1):1–8

    Article  Google Scholar 

  • Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. ASME J Eng Ind 113(2):160–168

    Article  Google Scholar 

  • Olgac N, Sipahi R (2005) Chatter stability mapping for simultaneous machining. ASME J Manuf Sci Eng 127(4):791–800

    Article  Google Scholar 

  • Sridhar R, Hohn RE, Long GW (1968) General formulation of the milling process equation. ASME J Eng Ind 90:317–324

    Article  Google Scholar 

  • Tlusty J, Polacek M (1957) Besipiele der behandlung der selbsterregten Schwingung der Werkzeugmaschinen, FoKoMa. Hanser Verlag, Munchen

    Google Scholar 

  • Tobias SA, Fiswick W (1958) Theory of regenerative machine tool chatter. The Engineering, London, p 258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hoon Ko SIMTech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Ko, J. (2014). Machining Dynamics in Manufacturing. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics