Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

This chapter discusses a possible way of specializing the generic forest model presented in the previous chapter for the classification task. A number of experiments on toy data are presented in order to provide the reader with some basic intuition about the behavior of classification forests. A small number of exercises is also provided to study the effect of various forest parameters and help the reader to familiarize with the available code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As opposed to transductive tasks. The distinction will become clearer later.

  2. 2.

    This effect will be analyzed further in the next section.

  3. 3.

    Analogous to support vectors in SVM.

References

  1. Benfold B, Reid I (2011) Unsupervised learning of a scene-specific coarse gaze estimator. In: Proc IEEE intl conf on computer vision (ICCV), Barcelona, Spain

    Google Scholar 

  2. Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proc intl conf on machine learning (ICML)

    Google Scholar 

  3. Chen Y, Kim T-K, Cipolla R (2011) Silhouette-based object phenotype recognition using 3D shape priors. In: Proc IEEE intl conf on computer vision (ICCV), Barcelona, Spain

    Google Scholar 

  4. Crammer K, Singer Y (2001) On the algorithmic implementation of multi-class SVMs. J Mach Learn Res

    Google Scholar 

  5. Criminisi A, Shotton J, Bucciarelli S (2009) Decision forests with long-range spatial context for organ localization in CT volumes. In: MICCAI workshop on probabilistic models for medical image analysis (PMMIA)

    Google Scholar 

  6. Criminisi A, Shotton J, Konukoglu E (2011) Online tutorial on decision forests. http://research.microsoft.com/projects/decisionforests

  7. Criminisi A, Shotton J, Konukoglu E (2012) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 7(2–3)

    Google Scholar 

  8. Everingham M, van Gool L, Williams C, Winn J, Zisserman A (2010) The Pascal visual object classes (VOC) challenge 2010. Int J Comput Vis 88

    Google Scholar 

  9. Freund Y, Schapire RE (1997) A decision theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1)

    Google Scholar 

  10. Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N (2011) Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance. NeuroImage

    Google Scholar 

  11. Girshick R, Shotton J, Kohli P, Criminisi A, Fitzgibbon A (2011) Efficient regression of general-activity human poses from depth images. In: Proc IEEE intl conf on computer vision (ICCV)

    Google Scholar 

  12. Glocker B, Pauly O, Konukoglu E, Criminisi A (2012) Joint classification-regression forests for spatially structured multi-object segmentation. In: Proc European conf on computer vision (ECCV). Springer, Berlin

    Google Scholar 

  13. Heath D, Kasif S, Salzberg S (1993) Induction of oblique decision trees. J Artif Intell Res 2(2)

    Google Scholar 

  14. Leistner C, Saffari A, Santner J, Bischoff H (2009) Semi-supervised random forests. In: Proc IEEE intl conf on computer vision (ICCV)

    Google Scholar 

  15. Lepetit V, Fua P (2006) Keypoint recognition using randomized trees. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  16. Malisievicz T, Gupta A, Efros AA (2011) Ensemble of exemplar-SVMs for object detection and beyond. In: Proc IEEE intl conf on computer vision (ICCV), Barcelona, Spain

    Google Scholar 

  17. Menze B, Kelm BM, Splitthoff DN, Koethe U, Hamprecht FA (2011) On oblique random forests. In: Proc European conf on machine learning (ECML/PKDD)

    Google Scholar 

  18. Nowozin S (2012) Improved information gain estimates for decision tree induction. In: Proc intl conf on machine learning (ICML)

    Google Scholar 

  19. Rogez G, Rihan J, Ramalingam S, Orrite C, Torr PHS (2008) Randomized trees for human pose detection. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  20. Shotton J, Johnson M, Cipolla R (2008) Semantic texton forests for image categorization and segmentation. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  21. Shotton J, Fitzgibbon AW, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from a single depth image. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  22. Shotton J, Girshick R, Fitzgibbon A, Sharp T, Cook M, Finocchio M, Moore R, Kohli P, Criminisi A, Kipman A, Blake A (2012) Efficient human pose estimation from single depth images. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  23. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7

    Google Scholar 

  24. Torralba A, Murphy KP, Freeman WT (2007) Sharing visual features for multiclass and multiview object detection. IEEE Trans Pattern Anal Mach Intell 19(5)

    Google Scholar 

  25. Tu Z (2005) Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In: Proc IEEE intl conf on computer vision (ICCV), Beijing, China, October 2005, vol 2

    Google Scholar 

  26. Vapnik V (2000) The nature of statistical learning theory. Springer, Berlin

    Google Scholar 

  27. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2)

    Google Scholar 

  28. Yin P, Criminisi A, Winn J, Essa I (2007) Tree based classifiers for bilayer video segmentation. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  29. Zien A, Ong CS (2007) Multiclass multiple kernel learning. In: Proc intl conf on machine learning (ICML)

    Google Scholar 

  30. Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas OM, Das T, Jena R, Price SJ (2012) Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Proc medical image computing and computer assisted intervention (MICCAI)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Criminisi, A., Shotton, J. (2013). Classification Forests. In: Criminisi, A., Shotton, J. (eds) Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4929-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4929-3_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4928-6

  • Online ISBN: 978-1-4471-4929-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics