Skip to main content

Developmental Aspects of the Electrophysiology of the Heart: Function Follows Form

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

The cardiovascular system is the first organ system to form and function in the developing embryo. In a typical lifetime the heart performs roughly 2,000 million contraction-relaxation cycles (2.3 × 109), to supply the whole body and all of its organs with oxygen and nutrients. To this end, an intricate and complex organ developed, encompassing multiple chambers containing electrical and force producing components, with nodes to activate the chambers and valves to prevent regurgitation. The cardiomyocytes of a primitive heart can be considered as a nodal cell because they display automaticity and are poorly coupled, which, together with slow propagation, gives rise to peristaltic contraction. The introduction of dominant pacemaker activity at the intake of the heart perfected such a heart into a one-way pump. Subsequently, highly localized, fast-conducting cardiac chambers were added to this nodal tube, resulting in the four-chambered hearts. Concomitant with the formation of such chambers, an adult type of electrocardiogram (ECG) can already be monitored in the embryo. Thus, cardiac design, i.e. the positioning of the atrial and ventricular chambers within the nodal tube, principally explains the coordinated activation of the heart reflected in the ECG. A crucial question is why some areas of the embryonic heart tube do not participate in the formation of atrial or ventricular working myocardium and mature in a nodal direction. As a generalized hypothesis we propose that the chamber-specific program of gene expression is specifically repressed by T-box factors and by other transcriptional repressors. Consequently, aberrant expression of these factors might be at the basis of ectopic automaticity, malformations of the conduction system and congenital heart disease in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canale ED, Campbell GR, Smolich JJ, Campbell JH. Cardiac muscle. Berlin: Springer; 1986.

    Book  Google Scholar 

  2. Seidl W, Schulze M, Steding G, Kluth D. A few remarks on the physiology of the chick embryo heart (Gallus gallus). Folia Morphol (Praha). 1981;29:237–42.

    CAS  Google Scholar 

  3. Habets PE, Moorman AF, Clout DE, van Roon MA, Lingbeek M, van Lohuizen M, et al. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev. 2002;16:1234–46.

    Article  PubMed  CAS  Google Scholar 

  4. Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–67.

    PubMed  CAS  Google Scholar 

  5. Randl DJ, Davie PS. The hearts of urochordates and cephalochordates. In: Bourne GH, editor. Hearts and heart-like organs. New York: Academic; 1980. p. 41–59.

    Google Scholar 

  6. Anderson M. Electrophysiological studies on initiation and reversal of the heart beat in Ciona intestinalis. J Exp Biol. 1968;49:363–85.

    PubMed  CAS  Google Scholar 

  7. Kriebel ME. Wave front analyses of impulses in tunicate heart. Am J Physiol. 1970;218:1194–200.

    PubMed  CAS  Google Scholar 

  8. Moller PC, Philpott CW. The circulatory system of Amphioxus (Branchiostoma floridae). I. Morphology of the major vessels of the pharyngeal area. J Morphol. 1973;139:389–406.

    Article  PubMed  CAS  Google Scholar 

  9. von Skramlik E. Über den kreislauf bei den niersten chordaten. Erg Biol. 1938;15:166–309.

    Article  Google Scholar 

  10. de Jong F, Opthof T, Wilde AA, Janse MJ, Charles R, Lamers WH, et al. Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res. 1992;71:240–50.

    Article  PubMed  Google Scholar 

  11. Timmermans C, Rodriguez LM, Medeiros A, Crijns HJ, Wellens HJ. Radiofrequency catheter ablation of idiopathic ventricular tachycardia ­originating in the main stem of the pulmonary artery. J Cardiovasc Electrophysiol. 2002;13:281–4.

    Article  PubMed  Google Scholar 

  12. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6:826–35.

    Article  PubMed  CAS  Google Scholar 

  13. van den Berg G, Abu-Issa R, de Boer BA, Hutson MR, de Boer PA, Soufan AT, et al. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res. 2009;104:179–88.

    Article  PubMed  CAS  Google Scholar 

  14. Sizarov A, Anderson R, Christoffels V, Moorman A. Three-dimensional and molecular analysis of the venous pole of the developing human heart. Circulation. 2010;122:798–807.

    Article  PubMed  Google Scholar 

  15. Sizarov A, Ya J, de Boer B, Lamers W, Christoffels V, Moorman A. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation. 2011;123:1125–35.

    Article  PubMed  Google Scholar 

  16. Sizarov A, Devalla H, Anderson R, Passier R, Christoffels V, Moorman A. Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol. 2011;4:532–42.

    Article  PubMed  Google Scholar 

  17. Habets PE, Moorman AF, Christoffels VM. Regulatory modules in the developing heart. Cardiovasc Res. 2003;58:246–63.

    Article  PubMed  CAS  Google Scholar 

  18. Anderson RH, Christoffels VM, Moorman AF. Controversies concerning the anatomical definition of the conduction tissues. Anat Rec B New Anat. 2004;280:8–14.

    Article  PubMed  Google Scholar 

  19. Christoffels VM, Moorman AFM. Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others? Circ Arrhythm Electrophysiol. 2009;2:195–207.

    Article  PubMed  Google Scholar 

  20. Alcolea S, Theveniau-Ruissy M, Jarry-Guichard T, Marics I, Tzouanacou E, Chauvin JP, et al. Downregulation of connexin 45 gene products during mouse heart development. Circ Res. 1999;84:1365–79.

    Article  PubMed  CAS  Google Scholar 

  21. Van Mierop LH. Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol. 1967;212:407–15.

    PubMed  Google Scholar 

  22. Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE, et al. Molecular pathway for the localized formation of the sinoatrial node. Circ Res. 2007;100:354–62.

    Article  PubMed  CAS  Google Scholar 

  23. Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de Vries C, et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res. 2009;104:388–97.

    Article  PubMed  CAS  Google Scholar 

  24. Horsthuis T, Buermans HP, Brons JF, Verkerk AO, Bakker ML, Wakker V, et al. Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter. Circ Res. 2009;105:61–9.

    Article  PubMed  CAS  Google Scholar 

  25. Aanhaanen WT, Brons JF, Dominguez JN, Rana MS, Norden J, Airik R, et al. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res. 2009;104:1267–74.

    Article  PubMed  CAS  Google Scholar 

  26. Christoffels VM, Smits GJ, Kispert A, Moorman AF. Development of the pacemaker tissues of the heart. Circ Res. 2010;106:240–54.

    Article  PubMed  CAS  Google Scholar 

  27. Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007;21:1098–112.

    Article  PubMed  CAS  Google Scholar 

  28. Aanhaanen WT, Mommersteeg MT, Norden J, Wakker V, de Gier-de Vries C, Anderson RH, et al. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ Res. 2010;107:728–36.

    Article  PubMed  CAS  Google Scholar 

  29. Moorman AF, Schumacher CA, de Boer PA, Hagoort J, Bezstarosti K, van den Hoff MJ, et al. Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. Dev Biol. 2000;223:279–90.

    Article  PubMed  CAS  Google Scholar 

  30. Soufan AT, van den Berg G, Ruijter JM, de Boer PA, Van Den Hoff MJ, Moorman AF. A regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res. 2006;99(5):545–52. Epub 2006 Aug 3.

    Article  CAS  Google Scholar 

  31. Christoffels VM, Habets PE, Franco D, Campione M, de Jong F, Lamers WH, et al. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol. 2000;223:266–78.

    Article  PubMed  CAS  Google Scholar 

  32. Papaioannou VE. T-box genes in development: from hydra to humans. Int Rev Cytol. 2001;207:1–70.

    Article  PubMed  CAS  Google Scholar 

  33. Harrelson Z, Kelly RG, Goldin SN, Gibson-Brown JJ, Bollag RJ, Silver LM, et al. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development. 2004;131:5041–52.

    Article  PubMed  CAS  Google Scholar 

  34. Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res. 2004;62:489–99.

    Article  PubMed  CAS  Google Scholar 

  35. Christoffels VM, Burch JB, Moorman AF. Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med. 2004;14:301–7.

    Article  PubMed  Google Scholar 

  36. Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M. T-box ­transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004;229:763–70.

    Article  PubMed  CAS  Google Scholar 

  37. Sinha S, Abraham S, Gronostajski RM, Campbell CE. Differential DNA binding and transcription modulation by three T-box proteins, T, TBX1 and TBX2. Gene. 2000;258:15–29.

    Article  PubMed  CAS  Google Scholar 

  38. He M, Wen L, Campbell CE, Wu JY, Rao Y. Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc Natl Acad Sci USA. 1999;96:10212–7.

    Article  PubMed  CAS  Google Scholar 

  39. Carreira S, Dexter TJ, Yavuzer U, Easty DJ, Goding CR. Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol Cell Biol. 1998;18:5099–108.

    PubMed  CAS  Google Scholar 

  40. Carlson H, Ota S, Campbell CE, Hurlin PJ. A ­dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that cause ulnar-mammary syndrome. Hum Mol Genet. 2001;10:2403–13.

    Article  PubMed  CAS  Google Scholar 

  41. Lingbeek ME, Jacobs JJ, van Lohuizen M. The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem. 2002;277:26120–7.

    Article  PubMed  CAS  Google Scholar 

  42. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    Article  PubMed  CAS  Google Scholar 

  43. Bamshad M, Lin RC, Law DJ, Watkins WC, Krakowiak PA, Moore ME, et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet. 1997;16:311–5.

    Article  PubMed  CAS  Google Scholar 

  44. Meneghini V, Odent S, Platonova N, Egeo A, Merlo GR. Novel TBX3 mutation data in families with Ulnar-Mammary syndrome indicate a genotype-phenotype relationship: mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur J Med Genet. 2006;49:151–8.

    Article  PubMed  Google Scholar 

  45. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.

    Article  PubMed  CAS  Google Scholar 

  46. Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281:108–11.

    Article  PubMed  CAS  Google Scholar 

  47. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, et al. TBX1 is responsible for ­cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001;104:619–29.

    Article  PubMed  CAS  Google Scholar 

  48. Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development. 2006;133:1565–73.

    Article  PubMed  CAS  Google Scholar 

  49. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27:286–91.

    Article  PubMed  CAS  Google Scholar 

  50. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995;9:1654–66.

    Article  PubMed  CAS  Google Scholar 

  51. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104:1567–73.

    Article  PubMed  CAS  Google Scholar 

  52. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, et al. Genome-wide association study of PR interval. Nat Genet. 2010;42:153–9.

    Article  PubMed  CAS  Google Scholar 

  53. Kasahara H, Wakimoto H, Liu M, Maguire CT, Converso KL, Shioi T, et al. Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J Clin Invest. 2001;108:189–201.

    PubMed  CAS  Google Scholar 

  54. Kasahara H, Benson DW. Biochemical analyses of eight NKX2.5 homeodomain missense mutations causing atrioventricular block and cardiac anomalies. Cardiovasc Res. 2004;64:40–51.

    Article  PubMed  CAS  Google Scholar 

  55. Meysen S, Marger L, Hewett KW, Jarry-Guichard T, Agarkova I, Chauvin JP, et al. Nkx2.5 cell-­autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev Biol. 2007;303:740–53.

    Article  PubMed  CAS  Google Scholar 

  56. Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, et al. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell. 2007;129:1365–76.

    Article  PubMed  CAS  Google Scholar 

  57. Gutierrez-Roelens I, De Roy L, Ovaert C, Sluysmans T, Devriendt K, Brunner HG, et al. A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype? Eur J Hum Genet. 2006;14:1313–6.

    Article  PubMed  CAS  Google Scholar 

  58. Postma AV, Dekker LR, Soufan AT, Moorman AF. Developmental and genetic aspects of atrial fibrillation Trends. Cardiovasc Med. 2009;19:123–30.

    Article  CAS  Google Scholar 

  59. Masani F. Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J Anat. 1986;145:133–42.

    PubMed  CAS  Google Scholar 

  60. Perez-Lugones A, McMahon JT, Ratliff NB, Saliba WI, Schweikert RA, Marrouche NF, et al. Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14:803–9.

    Article  PubMed  Google Scholar 

  61. Mommersteeg MT, Soufan AT, de Lange FJ, van den Hoff MJ, Anderson RH, Christoffels VM, et al. Two distinct pools of mesenchyme contribute to the development of the atrial septum. Circ Res. 2006;99:351–3.

    Article  PubMed  CAS  Google Scholar 

  62. Mommersteeg MT, Brown NA, Prall OW, de Gier-de Vries C, Harvey RP, Moorman AF, et al. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res. 2007;101:902–9.

    Article  PubMed  CAS  Google Scholar 

  63. Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, et al. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res. 2006;98:1555–63.

    Article  PubMed  CAS  Google Scholar 

  64. Cheng S, Keyes MJ, Larson MG, McCabe EL, Newton-Cheh C, Levy D, et al. Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA. 2009;301:2571–7.

    Article  PubMed  CAS  Google Scholar 

  65. Kispert A, Hermann BG. The Brachyury gene encodes a novel DNA binding protein. EMBO J. 1993;12:4898–9.

    PubMed  CAS  Google Scholar 

  66. Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol. 1999;211:100–8.

    Article  PubMed  CAS  Google Scholar 

  67. Boogerd CJ, Dooijes D, Ilgun A, Mathijssen IB, Hordijk R, van de Laar IM, et al. Functional analysis of novel TBX5 T-box mutations associated with Holt-Oram syndrome. Cardiovasc Res. 2010;88:130–9.

    Article  PubMed  CAS  Google Scholar 

  68. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709–21.

    Article  PubMed  CAS  Google Scholar 

  69. Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet. 2001;28:276–80.

    Article  PubMed  CAS  Google Scholar 

  70. Fijnvandraat AC, Lekanne Deprez RH, Christoffels VM, Ruijter JM, Moorman AF. TBX5 overexpression stimulates differentiation of chamber myocardium in P19C16 embryonic carcinoma cells. J Muscle Res Cell Motil. 2003;24:211–8.

    Article  PubMed  CAS  Google Scholar 

  71. Moskowitz IP, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S, et al. The T-Box ­transcription factor Tbx5 is required for the ­patterning and maturation of the murine cardiac conduction system. Development. 2004;131:4107–16.

    Article  PubMed  CAS  Google Scholar 

  72. Basson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA, et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med. 1994;330:885–91.

    Article  PubMed  CAS  Google Scholar 

  73. Postma AV, van de Meerakker JB, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, et al. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res. 2008;102:1433–42.

    Article  PubMed  CAS  Google Scholar 

  74. Mori AD, Zhu Y, Vahora I, Nieman B, Koshiba-Takeuchi K, Davidson L, et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev Biol. 2006;297(2):566–86.

    Article  PubMed  CAS  Google Scholar 

  75. Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H, et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet. 2010;42:117–22.

    Article  PubMed  CAS  Google Scholar 

  76. Boukens BJ, Christoffels VM, Coronel R, Moorman AF. Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. Circ Res. 2009;104:19–31.

    Article  PubMed  CAS  Google Scholar 

  77. Niederreither K, Vermot J, Messaddeq N, Schuhbaur B, Chambon P, Dolle P. Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development. 2001;128:1019–31.

    PubMed  CAS  Google Scholar 

  78. Koshiba-Takeuchi K, Mori AD, Kaynak BL, ­Cebra-Thomas J, Sukonnik T, Georges RO, et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature. 2009;461:95–8.

    Article  PubMed  CAS  Google Scholar 

  79. Shimizu W. The Brugada syndrome – an update. Intern Med. 2005;44:1224–31.

    Article  PubMed  Google Scholar 

  80. Kies P, Bootsma M, Bax J, Schalij MJ, van der Wall EE. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: screening, diagnosis, and treatment. Heart Rhythm. 2006;3:225–34.

    Article  PubMed  Google Scholar 

  81. Deal BJ, Keane JF, Gillette PC, Garson Jr A. Wolff-Parkinson-White syndrome and supraventricular tachycardia during infancy: management and follow-up. J Am Coll Cardiol. 1985;5:130–5.

    Article  PubMed  CAS  Google Scholar 

  82. Delhaas T, Sarvaas GJ, Rijlaarsdam ME, Strengers JL, Eveleigh RM, Poulino SE, et al. A multicenter, long term study on arrhythmias in children with Ebstein anomaly. Pediatr Cardiol. 2010;31:229–33.

    Article  PubMed  Google Scholar 

  83. Fananapazir L, Tracy CM, Leon MB, Winkler JB, Cannon 3rd RO, Bonow RO, et al. Electrophysiologic abnormalities in patients with hypertrophic ­cardiomyopathy. A consecutive analysis in 155 patients. Circulation. 1989;80:1259–68.

    Article  PubMed  CAS  Google Scholar 

  84. Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of ­cardiomyopathy. Circulation. 2003;108:2672–8.

    Article  PubMed  Google Scholar 

  85. Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344:1823–31.

    Article  PubMed  CAS  Google Scholar 

  86. Arad M, Maron BJ, Gorham JM, Johnson Jr WH, Saul JP, Perez-Atayde AR, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362–72.

    Article  PubMed  CAS  Google Scholar 

  87. Arad M, Moskowitz IP, Patel VV, Ahmad F, ­Perez-Atayde AR, Sawyer DB, et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation. 2003;107:2850–6.

    Article  PubMed  CAS  Google Scholar 

  88. Sidhu JS, Rajawat YS, Rami TG, Gollob MH, Wang Z, Yuan R, et al. Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Circulation. 2005;111:21–9.

    Article  PubMed  CAS  Google Scholar 

  89. Ko JK, Deal BJ, Strasburger JF, Benson Jr DW. Supraventricular tachycardia mechanisms and their age distribution in pediatric patients. Am J Cardiol. 1992;69:1028–32.

    Article  PubMed  CAS  Google Scholar 

  90. Naheed ZJ, Strasburger JF, Deal BJ, Benson Jr DW, Gidding SS. Fetal tachycardia: mechanisms and predictors of hydrops fetalis. J Am Coll Cardiol. 1996;27:1736–40.

    Article  PubMed  CAS  Google Scholar 

  91. Kolditz DP, Wijffels MC, Blom NA, van der Laarse A, Markwald RR, Schalij MJ, et al. Persistence of functional atrioventricular accessory pathways in postseptated embryonic avian hearts: implications for morphogenesis and functional maturation of the cardiac conduction system. Circulation. 2007;115:17–26.

    Article  PubMed  Google Scholar 

  92. Hahurij ND, Gittenberger-De Groot AC, Kolditz DP, Bokenkamp R, Schalij MJ, Poelmann RE, et al. Accessory atrioventricular myocardial connections in the developing human heart: relevance for perinatal supraventricular tachycardias. Circulation. 2008;117:2850–8.

    Article  PubMed  Google Scholar 

  93. De Haan R. Differentiation of the atrioventricular conduction system of the heart. Circulation. 1961;24:458–70.

    Article  Google Scholar 

  94. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, et al. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci USA. 2006;103:4753–8.

    Article  PubMed  CAS  Google Scholar 

  95. Wessels A, Markman M, Vermeulen J, Anderson R, Moorman A, Lamers W. The development of the atrioventricular junction in the human heart. Circ Res. 1996;78:110–7.

    Article  PubMed  CAS  Google Scholar 

  96. McGuire MA, de Bakker JM, Vermeulen JT, Moorman AF, Loh P, Thibault B, et al. Atrioventricular junctional tissue. Discrepancy between histological and electrophysiological characteristics. Circulation. 1996;94:571–7.

    Article  PubMed  CAS  Google Scholar 

  97. Ma L, Lu MF, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-­mesenchymal transition and myocardial ­patterning. Development. 2005;132:5601–11.

    Article  PubMed  CAS  Google Scholar 

  98. Aanhaanen WT, Boukens BJ, Sizarov A, Wakker V, de Gier-de Vries C, van Ginneken AC, et al. Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. J Clin Invest. 2011;121:534–44.

    Article  PubMed  CAS  Google Scholar 

  99. Le Gloan L, Pichon O, Isidor B, Boceno M, Rival JM, David A, et al. A 8.26 Mb deletion in 6q16 and a 4.95 Mb deletion in 20p12 including JAG1 and BMP2 in a patient with Alagille syndrome and Wolff-Parkinson-White syndrome. Eur J Med Genet. 2008;51:651–7.

    Article  PubMed  Google Scholar 

  100. Lalani SR, Thakuria JV, Cox GF, Wang X, Bi W, Bray MS, et al. 20p12.3 microdeletion predisposes to Wolff-Parkinson-White syndrome with variable neurocognitive deficits. J Med Genet. 2009;46:168–75.

    Article  PubMed  CAS  Google Scholar 

  101. Gaussin V, Morley GE, Cox L, Zwijsen A, Vance KM, Emile L, et al. Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circ Res. 2005;97:219–26.

    Article  PubMed  CAS  Google Scholar 

  102. Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfield L, Lu MM, et al. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest. 2011;121:525–33.

    Article  PubMed  CAS  Google Scholar 

  103. Rentschler S, Vaidya DM, Tamaddon H, Degenhardt K, Sassoon D, Morley GE, et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development. 2001;128:1785–92.

    PubMed  CAS  Google Scholar 

  104. van Kempen MJ, Fromaget C, Gros D, Moorman AF, Lamers WH. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circ Res. 1991;68:1638–51.

    Article  PubMed  Google Scholar 

  105. Kojima M, Sperelakis N, Sada H. Ontogenesis of transmembrane signaling systems for control of cardiac Ca2+ channels. J Dev Physiol. 1990;14:181–219.

    PubMed  CAS  Google Scholar 

  106. Franco D, Dominguez J, de Castro Md Mdel P, Aranega A. Regulation of myocardial gene expression during heart development. Rev Esp Cardiol. 2002;55:167–84.

    Article  PubMed  Google Scholar 

  107. Van Kempen MJ, Vermeulen JL, Moorman AF, Gros D, Paul DL, Lamers WH. Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res. 1996;32:886–900.

    PubMed  Google Scholar 

  108. Saffitz JE. Connexins, conduction, and atrial fibrillation. N Engl J Med. 2006;354:2712–4.

    Article  PubMed  CAS  Google Scholar 

  109. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, et al. Cardiac malformation in neonatal mice lacking connexin43. Science. 1995;267:1831–4.

    Article  PubMed  CAS  Google Scholar 

  110. Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH. Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med. 1995;332:1323–9.

    Article  PubMed  CAS  Google Scholar 

  111. Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res. 2001;479:173–86.

    Article  PubMed  CAS  Google Scholar 

  112. Delorme B, Dahl E, Jarry-Guichard T, Briand JP, Willecke K, Gros D, et al. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res. 1997;81:423–37.

    Article  PubMed  CAS  Google Scholar 

  113. Sperelakis N, Pappano AJ. Physiology and pharmacology of developing heart cells. Pharmacol Ther. 1983;22:1–39.

    Article  PubMed  CAS  Google Scholar 

  114. Wetzel GT, Klitzner TS. Developmental cardiac electrophysiology recent advances in cellular physiology. Cardiovasc Res. 1996;31 Spec No:E52–60.

    PubMed  CAS  Google Scholar 

  115. Yokoshiki H, Tohse N. Developmental changes in ion channels. In: Sperelakis N, editor. Heart physiology and pathophysiology. San Diego: Academic; 2001. p. 719–35.

    Chapter  Google Scholar 

  116. DiFrancesco D. Serious workings of the funny current. Prog Biophys Mol Biol. 2006;90:13–25.

    Article  PubMed  CAS  Google Scholar 

  117. Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA. 2003;100:15235–40.

    Article  PubMed  CAS  Google Scholar 

  118. Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, et al. I(f) current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res. 2001;88:536–42.

    Article  PubMed  CAS  Google Scholar 

  119. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, et al. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol. 2005;562:223–34.

    Article  PubMed  CAS  Google Scholar 

  120. Robinson RB, Yu H, Chang F, Cohen IS. Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells. Pflugers Arch. 1997;433:533–5.

    Article  PubMed  CAS  Google Scholar 

  121. Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns. 2003;3:777–83.

    Article  PubMed  CAS  Google Scholar 

  122. Kuratomi S, Ohmori Y, Ito M, Shimazaki K, Muramatsu S, Mizukami H, et al. The cardiac pacemaker-specific channel Hcn4 is a direct transcriptional target of MEF2. Cardiovasc Res. 2009;83:682–7.

    Article  PubMed  CAS  Google Scholar 

  123. Zhao XS, Gallardo TD, Lin L, Schageman JJ, Shohet RV. Transcriptional mapping and genomic analysis of the cardiac atria and ventricles. Physiol Genomics. 2002;12:53–60.

    PubMed  CAS  Google Scholar 

  124. Rottbauer W, Baker K, Wo ZG, Mohideen MA, Cantiello HF, Fishman MC. Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev Cell. 2001;1:265–75.

    Article  PubMed  CAS  Google Scholar 

  125. Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci USA. 2002;99:6210–5.

    Article  PubMed  CAS  Google Scholar 

  126. Chopra SS, Stroud DM, Watanabe H, Bennett JS, Burns CG, Wells KS, et al. Voltage-gated sodium channels are required for heart development in zebrafish. Circ Res. 2010;106:1342–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex V. Postma PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Postma, A.V., Christoffels, V.M., Moorman, A.F.M. (2013). Developmental Aspects of the Electrophysiology of the Heart: Function Follows Form. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics