Skip to main content
  • 2039 Accesses

Abstract

This chapter presents a general introduction to the book, with particular focus on Process Intensification (PI) and shape optimization of thermal and fluidic devices. After a literature review of the notion of PI and its development in the last two decades, a theoretical reflection is portrayed, based on a personal analysis. This permits introducing and clarifying various definitions, and highlighting a strategy, to achieve intensification at three scales: local scale, component scale and system scale. Intensification at each scale is closely related to the key issue of shape optimization, shape being a property of either an elemental structure, a device or a complete system. An outline of the book is provided at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akey G, Mackley MR, Ramshaw C (1997) Process intensification: opportunities for process and product innovation. IChemE Jubilee Research Event, Nottingham

    Google Scholar 

  • Anxionnaz Z, Cabassud M, Gourdon C, Tochon P (2008) Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art. Chem Eng Process 47:2029–2050

    Article  Google Scholar 

  • Arizmendi-Sánchez JA, Sharratt PN (2008) Phenomena-based modularisation of chemical process models to approach intensive options. Chem Eng J 135:83–94

    Article  Google Scholar 

  • Bayer T, Jenck J, Matlosz M (2005) IMPULSE-a new approach to process design. Chem Eng Technol 28:431–438

    Article  Google Scholar 

  • Becht S, Franke R, Geißelmann A, Hahn H (2007) Micro process technology as a means of process intensification. Chem Eng Technol 30:295–299

    Article  Google Scholar 

  • Becht S, Franke R, Geißelmann A, Hahn H (2009) An industrial view of process intensification. Chem Eng Process 48:329–332

    Article  Google Scholar 

  • Bejan A (1996) Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Appl Physics Rev 79:1191–1218

    Article  Google Scholar 

  • Bejan A (2000) Shape and structure, from engineering to nature. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bejan A, Lorente S (2008) Design with constructal theory. Wiley, Hoboken

    Book  Google Scholar 

  • Bejan A, Zane JP (2012) Design in nature: how the constructal law governs evolution in biology, physics, technology, and social organization. Doubleday, NY

    Google Scholar 

  • Charpentier JC (2005) Process intensification by miniaturization. Chem Eng Technol 28:255–258

    Article  Google Scholar 

  • Charpentier JC (2007) In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money). Chem Eng J 134:84–92

    Article  Google Scholar 

  • Charpentier JC, McKenna TF (2004) Managing complex systems: some trends for the future of chemical and process engineering. Chem Eng Sci 59:1617–1640

    Article  Google Scholar 

  • Commenge JM, Falk L (2009) Reaction and process system analysis, miniaturization and intensification strategies. In: Micro Process engineering—a comprehensive handbook. Syst Process Plant Eng Wiley-VCH Verlag, Weinheim, 3:23–42, ISBN 978-3-527-31550-5

    Google Scholar 

  • Dautzenberg FM, Mukherjee M (2001) Process intensification using multifunctional reactors. Chem Eng Sci 56:251–267

    Article  Google Scholar 

  • ERPI (2008) European roadmap for process intensification. Creative Energy-Energy Transition

    Google Scholar 

  • Etchells JC (2005) Process intensification: safety pros and cons. Process Saf Environ Prot 83:85–89

    Article  Google Scholar 

  • Fan Y, Luo L (2008) Recent applications of advances in micro channel heat exchangers and multi-scale design optimization. Heat Trans Eng 29:461–474

    Article  Google Scholar 

  • Green A (1998) Process intensification: the key to survival in global markets? Chem Indus pp. 168–172, 2 March 1998

    Google Scholar 

  • Harmsen GJ, Chewter LA (1999) Industrial applications of multi-functional, multi-phase reactors. Chem Eng Sci 54:1541–1545

    Article  Google Scholar 

  • Hasebe S (2004) Design and operation of micro-chemical plants—bridging the gap between nano, micro and macro technologies. Comp Chem Eng 29:57–64

    Article  Google Scholar 

  • Hendershot DC (2000) Process minimization: making plants safer. Chem Eng Prog 96:35–40

    Google Scholar 

  • Huang K, Wang SJ, Shan L, Zhu Q, Qian J (2007) Seeking synergistic effect-a key principle in process intensification. Sep Purif Technol 57:111–120

    Article  Google Scholar 

  • Jachuck RJ, Lee J, Kolokotsa D, Ramshaw C, Valachis P, Yanniotis S (1997) Process intensification for energy saving. Appl Therm Eng 17:861–867

    Article  Google Scholar 

  • Jensen KF (2001) Microreaction engineering—is small better? Chem Eng Sci 56:293–303

    Article  Google Scholar 

  • Kearney M (1999) Control of fluid dynamics with engineered fractals-adsorption process applications. Chem Eng Commun 173:43–52

    Article  Google Scholar 

  • Kjelstrup S, Bedeaux D, Johannessen E, Gross J (2010) Non-equilibrium thermodynamics for engineers. World Scientific, Singapore

    Book  Google Scholar 

  • Kochergin V, Kearney M (2006) Existing biorefinery operations that benefit from fractal-based process intensification. Appl Biochem Biotechnol 130:349–360

    Article  Google Scholar 

  • Luo L (2001) Intensification des transferts en milieux poreux. Mémoire d’Habilitation à Diriger des Recherches INPL Nancy, Nancy. ISBN 2-905267-36-4

    Google Scholar 

  • Lutze P, Gani R, Woodley JM (2010) Process intensification: a perspective on process synthesis. Chem Eng Process 49:547–558

    Article  Google Scholar 

  • Matlosz M, Falk L, Commenge JM (2009) Structured multi-scale process systems design and engineering —the role of microreactor technology in chemical process design. In: Micro process engineering—a comprehensive handbook. Syst Process Plant Eng Wiley-VCH Verlag, Weinheim, 3:1–20, ISBN 978-3-527-31550-5

    Google Scholar 

  • Mercer AC (1993) Process Intensification—the UK programme to encourage the development and use of intensified heat exchange and equipment and technology. Heat Recovery Syst CHP 13:539–545

    Article  Google Scholar 

  • Moulijn JA, Stankiewicz A, Grievink J, Górak A (2008) Process intensification and process systems engineering: a friendly symbiosis. Comput Chem Eng 32:3–11

    Article  Google Scholar 

  • Olujic Z, Fakhri F, de Rijke A, de Graauw J, Jansens PJ (2003) Internal heat integration—the key to an energy-conserving distillation column. J Chem Technol Biotechnol 78:241–248

    Article  Google Scholar 

  • Pilavachi PA (1993) Editorial. Heat Recovery Syst CHP 13:481

    Article  Google Scholar 

  • Ramshaw C (1983) Higee distillation-an example of process intensification. Chemical Engineer 389:13–14

    Google Scholar 

  • Ramshaw C (1995) Process intensification for the chemical industry. Wiley, London

    Google Scholar 

  • Reay D (2008) The role of process intensification in cutting greenhouse gas emissions. Appl Therm Eng 28:2011–2019

    Article  Google Scholar 

  • Sieniutycz S, Salamon P (1990) Finite-time thermodynamics and thermo economics. Taylor and Francis, New York

    Google Scholar 

  • Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process 42:137–144

    Article  Google Scholar 

  • Stankiewicz A, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96:22–34

    Google Scholar 

  • Stankiewicz A, Moulijn JA (2002) Process intensification. Ind Eng Chem Res 41:1920–1924

    Article  Google Scholar 

  • Tondeur D (1990) Equipartition of entropy production: a design and optimization criterion in chemical engineering. Finite-time thermodynamics and thermoeconomics. Taylor & Francis, New York, pp 175–208

    Google Scholar 

  • Tondeur D, Kvaalen E (1987) Equipartition of entropy production. An optimality criterion for transfer and separation processes. Ind Eng Chem Res 26:50–56

    Article  Google Scholar 

  • Tsouris C, Porcelli JV (2003) Process intensification—has its time finally come? Chem Eng Prog 99:50–55

    Google Scholar 

  • Tsouris C, Weatherley L (2006) Process intensification and innovation process (PI)2 conference II—Cleaner, sustainable, efficient technologies for the future. Chem Eng J. Christchurch, New Zealand, 135:1–2 Sep 24–29

    Google Scholar 

  • Van Gerven T, Stankiewicz A (2009) Structure, energy, synergy, times-the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474

    Article  Google Scholar 

  • Wegeng RS, Drost MK, Brenchley DL (2000) Process intensification through miniaturisation or micro thermal and chemical systems in the 21st century. In: Ehrfeld W (ed) Microreaction technology industrial prospects, Proceeding of the third international conference on microreaction technology. Springer

    Google Scholar 

  • Yue J, Boichot R, Luo L, Gonthier Y, Chen G, Yuan Q (2010) Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors. AIChE J 56:298–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingai Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Luo, L. (2013). General Introduction. In: Luo, L. (eds) Heat and Mass Transfer Intensification and Shape Optimization. Springer, London. https://doi.org/10.1007/978-1-4471-4742-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4742-8_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4741-1

  • Online ISBN: 978-1-4471-4742-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics