Skip to main content

Ion Beam Figuring Technology

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

In deterministic figuring process, it is critical to guarantee high stability of the removal function as well as the accuracy of the dwell-time solution, which directly influences the convergence of the figuring process. As an ultraprecision optical machining technique, ion beam figuring (IBF) has unique features, such as a highly controllable, stable, and noncontact material removal process, atomic scale material removal capability, etc., well to satisfy this requirement. Currently, IBF is widely used to machine ultraprecision optical elements which is used in lithography, space observation, and so on. This chapter has three sections to describe the IBF technology. Some important research results, summaries, and applications come from our research group. The fundamental theory of IBF is introduced firstly, which includes its principles, its distinctive performances and advantages, the current status and future of IBF, etc. The main content of this chapter is to discuss the key technology of IBF, such as material removal function modeling, contouring algorithm, analysis of correcting ability, optimum material removal of IBF, realization of IBF technique, and so on. In the third section, the challenges of IBF technical development and its new applications are also discussed in detail. They are (1) high-gradient optical surface figuring by IBF, (2) high thermal expansion and crystal optics figuring by IBF, and (3) supersmooth surface figuring and micro-roughness evolution. Finally, some conclusions and suggestions are summed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen LN (1994) Progress in ion figuring large optics. Proc SPIE 2428:237–247

    Article  Google Scholar 

  • Allen LN, Keim RE (1989) An ion figuring system for large optic fabrication. Proc SPIE 1168:33–50

    Article  Google Scholar 

  • Allen LN, Roming HW (1990) Demonstration of an ion figuring process, in advanced optical manufacturing and testing. Proc SPIE 1333

    Google Scholar 

  • Allen LN, Roming HW, Timothy SL (1991) Surface error correction of a Keck 10m telescope primary segment by ion figuring, advances in fabrication and metrology for optics and large optics. Proc SPIE 1531

    Google Scholar 

  • Allen LN, John JH, Richard WW (1991) Final surface error correction of off-axis aspheric petal by ion figuring, advances in fabrication and metrology for optics and large optics. Proc SPIE 1543

    Google Scholar 

  • Ando M, Numata A, Saito N, Taniguchi J (2004) Development of ion beam figuring system for mirror shape correction of minute area. In: The 3rd EUVL symposium, Tokyo

    Google Scholar 

  • Bradley RM, Harper JME (1988) Theory of ripple topography induced by ion bombardment. J Vac Sci Technol A 6(4):2390–2395

    Article  Google Scholar 

  • Braunecker B, Hentschel R, Tiziani HJ (2007) Advanced optics using aspherical elements. SPIE Press, Bellingham

    Google Scholar 

  • Bruning JH (2007) Optical lithography. 40 years and holding, SPIE 6520, 652004

    Google Scholar 

  • Carnal C, Egert CM, Hylton KW (1992) Advanced matrix-based algorithm for ion beam milling of optical components. Proc SPIE 1752:54–62

    Article  Google Scholar 

  • Changjun Jiao, Shengyi Li, Xuhui Xie (2009) Algorithm for ion beam figuring of low-gradient mirrors. Appl Opt 48(21):4090–4096

    Google Scholar 

  • Dai Yifan, Liao Wenlin, Zhou Lin, Chen Shanyong, Xie Xuhui (2010) Ion beam figuring of high slope surfaces based on figure error compensation algorithm. Appl Opt 49(34):6630–6636

    Google Scholar 

  • Drueding TW (1995) Precision ion figuring system for optical components. PhD thesis, Boston University

    Google Scholar 

  • Drueding TW, Bifano TG, Fawcett SC (1995) Contouring algorithm for ion figuring. Precis Eng 17:10–21

    Article  Google Scholar 

  • Fang CZ, Xiao DY (1998) Process identification. Tsinghua University Press

    Google Scholar 

  • Fawcett SC (1994) Development of an ion beam figuring system for centimeter scale optical components. Proc SPIE 2263:164–167

    Article  Google Scholar 

  • Frost F, Fechner R, Ziberi B, Ollner JV, Flamm D, Schindler A (2009) Large area smoothing of surfaces by ion bombardment: fundamentals and applications. J Phys Condens Matter 21

    Google Scholar 

  • Fruit M, Schindler A, Hansel T (1999) Ion beam figuring of SiC mirrors provides ultimate WFE performances for any type of telescope. Proc SPIE 3739:142–154

    Article  Google Scholar 

  • Gailly P, Collette JP, Tockj P et al (1999) Ion beam figuring of small BK7 and Zerodur optics: thermal effects[C]. In: The Europe conference on optical fabrication and testing, Berlin

    Google Scholar 

  • Gale AJ (1978) Ion machining of optical components. In: Optical society of America annual meeting conference proceedings

    Google Scholar 

  • Ghigo M, Citterio O, Conconi P, Mazzoleni F (2001) Ion beam figuring of nickel mandrels for x-ray replication optics In: Andreas K.Freund et al. Advances in X-ray optics. SPIE Vol 4145(2001):28–36

    Google Scholar 

  • Ghigo M, Cornelli S, Canestrari R, Garegnani D (2009) Development of a large ion beam figuring facility for correction of optics up to 1.7 m diameter. Proc SPIE 7426

    Google Scholar 

  • Haensel T, Seidel P, Nickel A, Schindler A (2006) Deterministic ion beam figuring of surface errors in the sub-millimeter spatial wavelength range[C]. In: Proceedings of EUSPEN, Baden/Vienna

    Google Scholar 

  • Haensel T, Nickel A, Schindler A (2008) Ion beam figuring of strongly curved surfaces with a (x,y,z) linear three-axes system. Plasmonics and metamaterials, OSA technical digest (CD) (Optical Society of America, 2008), JWD6

    Google Scholar 

  • Ion beam finishing technology for high precision optics production, NTGL-Nanotechnologie Leipzig GmbH. http://www.ntgl.de. Accessed 9 Jan 2003

  • Kaufman HR, Reader PD, Isaacson GC (1977) Ion sources for ion machining applications. AIAA J 15(6):843–847

    Article  Google Scholar 

  • Lin Zhou, Xie Xuhui, Dai Yifan, Jiao Changjun, Shengyi Li (2007) Ion beam figuring system in NUDT. Proc SPIE 67224A:1–6

    Google Scholar 

  • Lin Zhou, Yifan Dai, Xuhui Xie, Changjun Jiao, Shengyi Li (2008) Analysis of Correcting Ability of Ion Beam Figuring. Key Eng Mater 2008:364–366, P470–475

    Google Scholar 

  • Lin Zhou, Yifan Dai, Xuhui Xie, Shengyi Li (2009) Frequency-domain analysis of computer-controlled optical surfacing processes. Sci Ch Ser E-Technol Sci 53(7):2061–2068

    Google Scholar 

  • Lin Zhou, Yifan Dai, Xuhui Xie, Shengyi Li (2010) Optimum removal in ion beam figuring. Precis Eng 34:474–479

    Google Scholar 

  • Lucy LB (1974) An iterative technique for the rectification of observed distribution. Astron J 79:745–754

    Article  Google Scholar 

  • Meinel AB, Bushkin S, Loomis DA (1965) Controlled figuring of optical surfaces by energetic ionic beams. Appl Opt 4:1674

    Article  Google Scholar 

  • Molina R, Nunez J, Cortijo F, Mateos J (2001) Image restoration in astronomy: a Bayesian perspective. IEEE Signal Process Lett 18:11–29

    Article  Google Scholar 

  • Nelson J (2010) DRAFT ion figuring thermal considerations, TMT. PSC.TEC. 10.006.REL02

    Google Scholar 

  • Particle interactions with matter. http://www.srim.org/

  • Richardson WH (1972) Bayesian-based iterative method of image restoration. J Opt Soc Am 62:55–59

    Article  Google Scholar 

  • Roland G (2010) New challenges in precision optics astronomy: from VLT to ELT microlithography: from DUV to EUV, keynote, AOMATT, Dalian

    Google Scholar 

  • Schindler A, Haensel T, Zeuner M, Seidenkranz G (2000) Ion beam figuring and ion beam polishing production tools – processing technology included – for customized solutions. Trends Opt Photonics Opt Fabr Test 42:135–137, xii+165

    Google Scholar 

  • Shanbhag PM, Feinberg MR, Sandri G, Horenstein MN, Bifano TG (2000) Ion-beam machining of millimeter scale optics. Appl Optics 39:599–611

    Article  Google Scholar 

  • Shengyi Li, Xuhui Xie (2010) Research on controllable compliant tools (CCT) theory and technology. Proc SPIE 7655:765509-1:765509-9

    Google Scholar 

  • Sigmund P (1973) A mechanism of surface micro-roughening by ion bombardment. J Mater Sci 8:1545–1553

    Article  Google Scholar 

  • Tock JP, Collette JP, Gailly P, Kampf D (1999) Figuring sequences on a super-smooth sample using ion beam technique. Proc SPIE 3739:132–141

    Article  Google Scholar 

  • Weiser M (2009) Ion beam figuring for lithography optics. Nucl Instrum Methods Phys Res B 267

    Google Scholar 

  • Wilson SR (1987) Ion beam figuring of optical surfaces. Master’s thesis, University of New Mexico

    Google Scholar 

  • Wilson SR, McNeil JR (1987) Neutral ion beam figuring of large optical surface. Proc SPIE 818:320–324

    Article  Google Scholar 

  • Wilson SR, Reicher DW, McNeil JR (1989) Surface figuring using neutral ion beams. In: Proceedings of the SPIE – the international society for optical engineering |proceedings of the SPIE – the international society for optical engineering, vol 966, pp 74–81

    Google Scholar 

  • Xie xuhui, Gu Wen-hua, Zhou lin (2009) Study on machining small precision optical component using thin ion beam. J Natl Univ Def Technol 31:10–14

    Google Scholar 

  • Xuhui Xie, Lin Zhou, Yifan Dai, Shengyi Li (2011) Ion beam machining error control and correction for small scale optics. Appl Opt 50(27):5221–5227

    Google Scholar 

  • Xuhui Xie, Yu Hao, Lin Zhou, Yifan Dai, Shengyi Li (2012) High thermal expansion optical component machined by IBF. J Opt Eng 51(1):013401-1–013401-7

    Google Scholar 

  • Yuan Zheng, Dai Yifan, Xie Xuhui, Zhou Lin (2011) Ion beam figuring for ultra-precise optics. In: Key Engineering Materials. 2012, 516:19–24

    Google Scholar 

  • Zhou lin, Dai yifan, Xie xuhui (2007) Model and method to determine dwell time in ion beam figuring. Nanom Technol Precis Eng 5(2):107–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhui Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Xie, X., Li, S. (2015). Ion Beam Figuring Technology. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_65

Download citation

Publish with us

Policies and ethics