Skip to main content

Abstract

Congestive heart failure is defined as the inability of the heart to meet the metabolic demands of the body or else to meet these demands only in the setting of an abnormally elevated filling pressure. The clinical presentation of a patient with heart failure is variable and depends on the degree of compensation. Heart failure is often a result of myocardial failure but may also occur in the presence of near-normal cardiac function under conditions of extremely high demand. Irrespective of etiology, the end result of heart failure is circulatory failure. This chapter will provide an overview of mechanisms, diagnostic tools, and management of cardiac failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross J Jr, Braunwald E (1964) Studies on Starling’s law of the heart. IX. The effects of impeding venous return on performance of the normal and failing human left ventricle. Circulation 30:719–727

    Article  PubMed  Google Scholar 

  2. Quinones MA, Gaasch WH, Alexander JK (1976) Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation 53(2):293–302

    Article  CAS  PubMed  Google Scholar 

  3. Ross J Jr (1983) Mechanisms of cardiac contraction. What roles for preload, afterload and inotropic state in heart failure? Eur Heart J 4(Suppl A):19–28

    Article  PubMed  Google Scholar 

  4. Grossman W, Braunwald E, Mann T, McLaurin LP, Green LH (1977) Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 56(5):845–852

    Article  CAS  PubMed  Google Scholar 

  5. Suga H, Kitabatake A, Sagawa K (1979) End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state. Circ Res 44(2):238–249

    Article  CAS  PubMed  Google Scholar 

  6. Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41(2):233–243

    Article  CAS  PubMed  Google Scholar 

  7. Cody RJ (1997) The sympathetic nervous system and the renin-angiotensin-aldosterone system in cardiovascular disease. Am J Cardiol 80(9B):9J–14J

    Article  CAS  PubMed  Google Scholar 

  8. Curtiss C, Cohn JN, Vrobel T, Franciosa JA (1978) Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 58(5):763–770

    Article  CAS  PubMed  Google Scholar 

  9. Lee MA, Bohm M, Paul M, Ganten D (1993) Tissue renin-angiotensin systems. Their role in cardiovascular disease. Circulation 87(5 Suppl):IV7–IV13

    CAS  PubMed  Google Scholar 

  10. Dzau VJ (1993) Local contractile and growth modulators in the myocardium. Clin Cardiol 16(5 Suppl 2):II5–II9

    Article  CAS  PubMed  Google Scholar 

  11. Cohn JN (1995) Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 91(10):2504–2507

    Article  CAS  PubMed  Google Scholar 

  12. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59(3):297–309

    Article  CAS  PubMed  Google Scholar 

  13. Ratajska A, Campbell SE, Sun Y, Weber KT (1994) Angiotensin II associated cardiac myocyte necrosis: role of adrenal catecholamines. Cardiovasc Res 28(5):684–690

    Article  CAS  PubMed  Google Scholar 

  14. Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341(8):577–585

    Article  CAS  PubMed  Google Scholar 

  15. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P et al (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347(3):161–167

    Article  CAS  PubMed  Google Scholar 

  16. Cowie MR, Struthers AD, Wood DA, Coats AJ, Thompson SG, Poole-Wilson PA et al (1997) Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet 350(9088):1349–1353

    Article  CAS  PubMed  Google Scholar 

  17. Dao Q, Krishnaswamy P, Kazanegra R, Harrison A, Amirnovin R, Lenert L et al (2001) Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. J Am Coll Cardiol 37(2):379–385

    Article  CAS  PubMed  Google Scholar 

  18. Colucci WS (1997) Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80(11A):15L–25L

    Article  CAS  PubMed  Google Scholar 

  19. Ross RD, Bollinger RO, Pinsky WW (1992) Grading the severity of congestive heart failure in infants. Pediatr Cardiol 13(2):72–75

    Article  CAS  PubMed  Google Scholar 

  20. Yoshibayashi M, Kamiya T, Saito Y, Nakao K, Nishioka K, Temma S et al (1995) Plasma brain natriuretic peptide concentrations in healthy children from birth to adolescence: marked and rapid increase after birth. Eur J Endocrinol 133(2):207–209

    Article  CAS  PubMed  Google Scholar 

  21. Law YM, Keller BB, Feingold BM, Boyle GJ (2005) Usefulness of plasma B-type natriuretic peptide to identify ventricular dysfunction in pediatric and adult patients with congenital heart disease. Am J Cardiol 95(4):474–478

    Article  CAS  PubMed  Google Scholar 

  22. Nir A, Nasser N (2005) Clinical value of NT-ProBNP and BNP in pediatric cardiology. J Card Fail 11(5 Suppl):S76–S80

    Article  CAS  PubMed  Google Scholar 

  23. Grantham JA, Burnett JC Jr (1997) BNP: increasing importance in the pathophysiology and diagnosis of congestive heart failure. Circulation 96(2):388–390

    CAS  PubMed  Google Scholar 

  24. de Lemos JA, McGuire DK, Drazner MH (2003) B-type natriuretic peptide in cardiovascular disease. Lancet 362(9380):316–322

    Article  PubMed  Google Scholar 

  25. Lauer B, Schannwell M, Kuhl U, Strauer BE, Schultheiss HP (2000) Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol 35(1):11–18

    Article  CAS  PubMed  Google Scholar 

  26. Eronen M, Siren MK, Ekblad H, Tikanoja T, Julkunen H, Paavilainen T (2000) Short- and long-term outcome of children with congenital complete heart block diagnosed in utero or as a newborn. Pediatrics 106(1 Pt 1):86–91

    Article  CAS  PubMed  Google Scholar 

  27. Moak JP, Barron KS, Hougen TJ, Wiles HB, Balaji S, Sreeram N et al (2001) Congenital heart block: development of late-onset cardiomyopathy, a previously underappreciated sequela. J Am Coll Cardiol 37(1):238–242

    Article  CAS  PubMed  Google Scholar 

  28. Udink ten Cate FE, Breur JM, Cohen MI, Boramanand N, Kapusta L, Crosson JE et al (2001) Dilated cardiomyopathy in isolated congenital complete atrioventricular block: early and long-term risk in children. J Am Coll Cardiol 37(4):1129–1134

    Article  CAS  PubMed  Google Scholar 

  29. Boccalandro F, Velasco A, Thomas C, Richards B, Radovancevic B (2003) Relations among heart failure severity, left ventricular loading conditions, and repolarization length in advanced heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 92(5):544–547

    Article  PubMed  Google Scholar 

  30. Galinier M, Vialette JC, Fourcade J, Cabrol P, Dongay B, Massabuau P et al (1998) QT interval dispersion as a predictor of arrhythmic events in congestive heart failure. Importance of aetiology. Eur Heart J 19(7):1054–1062

    Article  CAS  PubMed  Google Scholar 

  31. Towbin JA (1999) Pediatric myocardial disease. Pediatr Clin North Am 46(2):289–312, ix

    Article  CAS  PubMed  Google Scholar 

  32. Lamb HJ, Singleton RR, van der Geest RJ, Pohost GM, de Roos A (1995) MR imaging of regional cardiac function: low-pass filtering of wall thickness curves. Magn Reson Med 34(3):498–502

    Article  CAS  PubMed  Google Scholar 

  33. Prakash A, Powell AJ, Krishnamurthy R, Geva T (2004) Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol 93(5):657–661

    Article  PubMed  Google Scholar 

  34. Kaufman J, Almodovar MC, Zuk J, Friesen RH (2008) Correlation of abdominal site near-infrared spectroscopy with gastric tonometry in infants following surgery for congenital heart disese. Pediatr Crit Care Med 9(1):62–68

    Article  PubMed  Google Scholar 

  35. Sullivan JE, Witte MK, Yamashita TS, Myers CM, Blumer JL (1996) Dose-ranging evaluation of bumetanide pharmacodynamics in critically ill infants. Clin Pharmacol Ther 60(4):424–434

    Article  CAS  PubMed  Google Scholar 

  36. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med 341(10):709–717

    Article  CAS  PubMed  Google Scholar 

  37. McDonald KM, D'Aloia A, Parrish T, Mock J, Hauer K, Stillman AE et al (1998) Functional impact of an increase in ventricular mass after myocardial damage and its attenuation by converting enzyme inhibition. J Card Fail 4(3):203–212

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura H, Ishii M, Sugimura T, Chiba K, Kato H, Ishizaki T (1994) The kinetic profiles of enalapril and enalaprilat and their possible developmental changes in pediatric patients with congestive heart failure. Clin Pharmacol Ther 56(2):160–168

    Article  CAS  PubMed  Google Scholar 

  39. (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J Med 316(23):1429–35

    Google Scholar 

  40. (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 325(5):293–302

    Google Scholar 

  41. Lewis AB, Chabot M (1993) The effect of treatment with angiotensin-converting enzyme inhibitors on survival of pediatric patients with dilated cardiomyopathy. Pediatr Cardiol 14(1):9–12

    CAS  PubMed  Google Scholar 

  42. Montigny M, Davignon A, Fouron JC, Biron P, Fournier A, Elie R (1989) Captopril in infants for congestive heart failure secondary to a large ventricular left-to-right shunt. Am J Cardiol 63(9):631–633

    Article  CAS  PubMed  Google Scholar 

  43. Webster MW, Neutze JM, Calder AL (1992) Acute hemodynamic effects of converting enzyme inhibition in children with intracardiac shunts. Pediatr Cardiol 13(3):129–135

    CAS  PubMed  Google Scholar 

  44. Leversha AM, Wilson NJ, Clarkson PM, Calder AL, Ramage MC, Neutze JM (1994) Efficacy and dosage of enalapril in congenital and acquired heart disease. Arch Dis Child 70(1):35–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL et al (2003) Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-overall programme. Lancet 362(9386):759–766

    Article  CAS  PubMed  Google Scholar 

  46. McGowan FX Jr, Davis PJ, Siewers RD, del Nido PJ (1995) Coronary vasoconstriction mediated by endothelin-1 in neonates. Reversal by nitroglycerin. J Thorac Cardiovasc Surg 109(1):88–97, discussion 97–98

    Article  PubMed  Google Scholar 

  47. Kawamura M, Minamikawa O, Yokochi H, Maki S, Yasuda T, Mizukawa Y (1980) Combined use of phenoxybenzamine and dopamine for low cardiac output syndrome in children at withdrawal from cardiopulmonary bypass. Br Heart J 43(4):388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC et al (2003) Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 107(7):996–1002

    Article  CAS  PubMed  Google Scholar 

  49. Chang AC, Atz AM, Wernovsky G, Burke RP, Wessel DL (1995) Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med 23(11):1907–1914

    Article  CAS  PubMed  Google Scholar 

  50. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 325(21):1468–1475

    Article  CAS  PubMed  Google Scholar 

  51. Olsen SL, Gilbert EM, Renlund DG, Taylor DO, Yanowitz FD, Bristow MR (1995) Carvedilol improves left ventricular function and symptoms in chronic heart failure: a double-blind randomized study. J Am Coll Cardiol 25(6):1225–1231

    Article  CAS  PubMed  Google Scholar 

  52. Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H et al (2002) Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 106(17):2194–2199

    Article  PubMed  Google Scholar 

  53. Krum H, Sackner-Bernstein JD, Goldsmith RL, Kukin ML, Schwartz B, Penn J et al (1995) Double-blind, placebo-controlled study of the long-term efficacy of carvedilol in patients with severe chronic heart failure. Circulation 92(6):1499–1506

    Article  CAS  PubMed  Google Scholar 

  54. Shaddy KE, Boucek MM, Hsu OT, Boucek RJ, Canter CE, Mahony L et al (2007) Pediatric Carvedilol Group. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 12,298(10):1171–1179

    Article  PubMed  Google Scholar 

  55. Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE et al (1996) Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 94(11):2807–2816

    Article  CAS  PubMed  Google Scholar 

  56. Buchhorn R, Hulpke-Wette M, Hilgers R, Bartmus D, Wessel A, Bursch J (2001) Propranolol treatment of congestive heart failure in infants with congenital heart disease: the CHF-PRO-INFANT trial. Congestive heart failure in infants treated with propanol. Int J Cardiol 79(2–3):167–173

    Article  CAS  PubMed  Google Scholar 

  57. Ross RD (2001) Medical management of chronic heart failure in children. Am J Cardiovasc Drugs 1(1):37–44

    Article  CAS  PubMed  Google Scholar 

  58. Smith TW (1993) Digoxin in heart failure. N Engl J Med 329(1):51–53

    Article  CAS  PubMed  Google Scholar 

  59. Tauke J, Goldstein S, Gheorghiade M (1994) Digoxin for chronic heart failure: a review of the randomized controlled trials with special attention to the PROVED (Prospective Randomized Study of Ventricular Failure and the Efficacy of Digoxin) and RADIANCE (Randomized Assessment of Digoxin on Inhibitors of the Angiotensin Converting Enzyme) trials. Prog Cardiovasc Dis 37(1):49–58

    Article  CAS  PubMed  Google Scholar 

  60. (1997) The effect of digoxin on mortality and morbidity in patients with heart failure. The Digitalis Investigation Group. N Engl J Med 336(8):525–33

    Google Scholar 

  61. Mahle WT, Cuadrado AR, Kirshbom PM, Kanter KR, Simsic JM (2005) Nesiritide in infants and children with congestive heart failure. Pediatr Crit Care Med 6(5):543–546

    Article  PubMed  Google Scholar 

  62. Sehra R, Underwood K (2006) Nesiritide use for critically ill children awaiting cardiac transplantation. Pediatr Cardiol 27(1):47–50

    Article  CAS  PubMed  Google Scholar 

  63. Egan JR, Clarke AJ, Williams S, Cole AD, Ayer J, Jacobe S et al (2006) Levosimendan for low cardiac output: a pediatric experience. J Intensive Care Med 21(3):183–187

    Article  PubMed  Google Scholar 

  64. Namachivayam P, Crossland DS, Butt WW, Shekerdemian LS (2006) Early experience with levosimendan in children with ventricular dysfunction. Pediatr Crit Care Med 7(5):445–448

    Article  PubMed  Google Scholar 

  65. Thatai D, Ahooja V, Pullicino PM (2006) Pharmacological prevention of thromboembolism in patients with left ventricular dysfunction. Am J Cardiovasc Drugs 6(1):41–49

    Article  CAS  PubMed  Google Scholar 

  66. Heymsfield SB, Smith J, Redd S, Whitworth HB Jr (1981) Nutritional support in cardiac failure. Surg Clin North Am 61(3):635–652

    Article  CAS  PubMed  Google Scholar 

  67. Akagi T, Benson LN, Lightfoot NE, Chin K, Wilson G, Freedom RM (1991) Natural history of dilated cardiomyopathy in children. Am Heart J 121(5):1502–1506

    Article  CAS  PubMed  Google Scholar 

  68. Canter CE, Shaddy RE, Bernstein D, Hsu DT, Chrisant MR, Kirklin JK et al (2007) Indications for heart transplantation in pediatric heart disease: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young; the Councils on Clinical Cardiology, Cardiovascular Nursing, and Cardiovascular Surgery and Anesthesia; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 115(5):658–676

    Article  PubMed  Google Scholar 

  69. Lewis AB, Chabot M (1991) Outcome of infants and children with dilated cardiomyopathy. Am J Cardiol 68(4):365–369

    Article  CAS  PubMed  Google Scholar 

  70. Tsirka AE, Trinkaus K, Chen SC, Lipshultz SE, Towbin JA, Colan SD et al (2004) Improved outcomes of pediatric dilated cardiomyopathy with utilization of heart transplantation. J Am Coll Cardiol 44(2):391–397

    Article  PubMed  Google Scholar 

  71. Calabrese F, Rigo E, Milanesi O, Boffa GM, Angelini A, Valente M et al (2002) Molecular diagnosis of myocarditis and dilated cardiomyopathy in children: clinicopathologic features and prognostic implications. Diagn Mol Pathol 11(4):212–221

    Article  PubMed  Google Scholar 

  72. English RF, Janosky JE, Ettedgui JA, Webber SA (2004) Outcomes for children with acute myocarditis. Cardiol Young 14(5):488–493

    Article  PubMed  Google Scholar 

  73. Lee KJ, McCrindle BW, Bohn DJ, Wilson GJ, Taylor GP, Freedom RM et al (1999) Clinical outcomes of acute myocarditis in childhood. Heart 82(2):226–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Tissot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Tissot, C., da Cruz, E.M., Miyamoto, S.D. (2014). Congestive Heart Failure. In: Da Cruz, E., Ivy, D., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4619-3_229

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4619-3_229

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4618-6

  • Online ISBN: 978-1-4471-4619-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics