Skip to main content

Abstract

The function of the left and right ventricles is inextricably linked. Shared muscle fibers, a common septum, and the surrounding pericardium and thoracic chamber inevitably impose series, parallel, geometric, and electrical interaction of the ventricles. The hemodynamic effects are immediate, independent of neural influences or circulating factors, and prominently contribute to the cardiovascular response in various disease states. A fundamental understanding of these interactions in the structurally normal and congenitally malformed heart is crucial for informed clinical decision-making. This chapter explores the anatomic basis and physiologic responses of intracardiac interactions in the normal heart and in congenital and acquired heart disease, highlighting the consequent clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis 40(4):289–308

    Article  CAS  PubMed  Google Scholar 

  2. Penny DJ (1999) The basics of ventricular function. Cardiol Young 9(2):210–223

    CAS  PubMed  Google Scholar 

  3. Anderson RH, Mohun TJ, Moorman AF (2011) What is a ventricle? Cardiol Young 21(Suppl 2):14–22

    Article  PubMed  Google Scholar 

  4. Anderson RH, Baker EJ, Redington AN (2000) Can we describe structure as well as function when accounting for the arrangement of the ventricular mass? Cardiol Young 10(3):247–260

    Article  CAS  PubMed  Google Scholar 

  5. Torrent-Guasp F, Kocica MJ, Corno AF et al (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27(2):191–201

    Article  PubMed  Google Scholar 

  6. Anderson RH, Sanchez-Quintana D, Redmann K et al (2007) How are the myocytes aggregated so as to make up the ventricular mass? Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 10:76–86

    Article  Google Scholar 

  7. Streeter DD Jr, Spotnitz HM, Patel DP et al (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347

    Article  PubMed  Google Scholar 

  8. Sengupta PP, Korinek J, Belohlavek M et al (2006) Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol 48(10):1988–2001

    Article  PubMed  Google Scholar 

  9. Buckberg G, Mahajan A, Saleh S et al (2008) Structure and function relationships of the helical ventricular myocardial band. J Thorac Cardiovasc Surg 136(3):578–589, 589 e571-511

    Article  PubMed  Google Scholar 

  10. Schmid P, Jaermann T, Boesiger P et al (2005) Ventricular myocardial architecture as visualised in postmortem swine hearts using magnetic resonance diffusion tensor imaging. Eur J Cardiothorac Surg 27(3):468–472

    Article  PubMed  Google Scholar 

  11. Slinker BK, Glantz SA (1986) End-systolic and end-diastolic ventricular interaction. Am J Physiol 251(5 Pt 2):H1062–H1075

    CAS  PubMed  Google Scholar 

  12. Redington AN, Gray HH, Hodson ME et al (1988) Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br Heart J 59(1):23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rouleau JL, Paradis P, Shenasa H et al (1986) Faster time to peak tension and velocity of shortening in right versus left ventricular trabeculae and papillary muscles of dogs. Circ Res 59(5):556–561

    Article  CAS  PubMed  Google Scholar 

  14. Kondo RP, Dederko DA, Teutsch C et al (2006) Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. J Physiol 571(Pt 1):131–146

    Article  CAS  PubMed  Google Scholar 

  15. Wang GY, McCloskey DT, Turcato S et al (2006) Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol Heart Circ Physiol 291(4):H2013–H2017

    Article  CAS  PubMed  Google Scholar 

  16. Burkhoff D, Kronenberg MW, Yue DT et al (1987) Quantitative comparison of canine right and left ventricular isovolumic pressure waves. Am J Physiol 253(2 Pt 2):H475–H479

    CAS  PubMed  Google Scholar 

  17. Starr I (1943) The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J 26(3):10

    Article  Google Scholar 

  18. Oboler AA, Keefe JF, Gaasch WH et al (1973) Influence of left ventricular isovolumic pressure upon right ventricular pressure transients. Cardiology 58(1):32–44

    Article  CAS  PubMed  Google Scholar 

  19. Damiano RJ Jr, La Follette P, Cox JL Jr et al (1991) Significant left ventricular contribution to right ventricular systolic function. Am J Physiol 261(5 Pt 2):H1514–H1524

    PubMed  Google Scholar 

  20. Feneley MP, Gavaghan TP, Baron DW et al (1985) Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation 71(3):473–480

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi S, Harasawa H, Li KS et al (1991) Comparative significance in systolic ventricular interaction. Cardiovasc Res 25(9):774–783

    Article  CAS  PubMed  Google Scholar 

  22. Yaku H, Slinker BK, Bell SP et al (1994) Effects of free wall ischemia and bundle branch block on systolic ventricular interaction in dog hearts. Am J Physiol 266(3 Pt 2):H1087–H1094

    CAS  PubMed  Google Scholar 

  23. Muller-Strahl G, Hemker J, Zimmer HG (2002) Afterload- and preload-dependent interactions in the isolated biventricular working rat heart. Exp Clin Cardiol 7(4):180–187

    PubMed  PubMed Central  Google Scholar 

  24. Santamore WP, Damiano RJJ, Yamaguchi S et al (1990) Dynamic biventricular interaction during systole. Coron Artery Dis 1(3):298–306

    Article  Google Scholar 

  25. Langille BL, Jones DR (1977) Mechanical interaction between the ventricles during systole. Can J Physiol Pharmacol 55(3):373–382

    Article  CAS  PubMed  Google Scholar 

  26. Bernheim PI (1910) De l’asystolie veineuse dans l’hypertrophie du coeur gauche par stenose concomitante du ventricule droit. Revue de Medicine (Paris) 39:785–794

    Google Scholar 

  27. Dexter L (1956) Atrial septal defect. Br Heart J 18(2):209–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinsky MR, Perlini S, Solda PL et al (1996) Dynamic right and left ventricular interactions in the rabbit: simultaneous measurement of ventricular pressure-volume loops. J Crit Care 11(2):65–76

    Article  CAS  PubMed  Google Scholar 

  29. Taylor RR, Covell JW, Sonnenblick EH et al (1967) Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 213(3):711–718

    CAS  PubMed  Google Scholar 

  30. Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289(2):H501–H512

    Article  CAS  PubMed  Google Scholar 

  31. Lima JA, Guzman PA, Yin FC et al (1986) Septal geometry in the unloaded living human heart. Circulation 74(3):463–468

    Article  CAS  PubMed  Google Scholar 

  32. Diamond G, Forrester JS, Hargis J et al (1971) Diastolic pressure-volume relationship in the canine left ventricle. Circ Res 29(3):267–275

    Article  CAS  PubMed  Google Scholar 

  33. Redington AN, Penny D, Rigby ML et al (1992) Antegrade diastolic pulmonary arterial flow as a marker of right ventricular restriction after complete repair of pulmonary atresia with intact septum and critical pulmonary valvar stenosis. Cardiol Young 2(04):382–386

    Google Scholar 

  34. Little WC, Badke FR, O'Rourke RA (1984) Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res 54(6):719–730

    Article  CAS  PubMed  Google Scholar 

  35. Slinker BK, Chagas AC, Glantz SA (1987) Chronic pressure overload hypertrophy decreases direct ventricular interaction. Am J Physiol 253(2 Pt 2):H347–H357

    CAS  PubMed  Google Scholar 

  36. Donald DE, Essex HE (1954) Pressure studies after inactivation of the major portion of the canine right ventricle. Am J Physiol 176(1):155–161

    CAS  PubMed  Google Scholar 

  37. Kagan A (1952) Dynamic responses of the right ventricle following extensive damage by cauterization. Circulation 5(6):816–823

    Article  CAS  PubMed  Google Scholar 

  38. Seki S, Ohba O, Tanizaki M et al (1975) Construction of new right ventricle on the epicardium: a possible correction for underdevelopment of the right ventricle. J Thorac Cardiovasc Surg 70(2):330–337

    CAS  PubMed  Google Scholar 

  39. Hoffman D, Sisto D, Frater RW et al (1994) Left-to-right ventricular interaction with a noncontracting right ventricle. J Thorac Cardiovasc Surg 107(6):1496–1502

    CAS  PubMed  Google Scholar 

  40. Goldreyer BN (1982) Physiologic pacing: the role of AV synchrony. Pacing Clin Electrophysiol 5(4):613–615

    Article  CAS  PubMed  Google Scholar 

  41. Maruyama Y, Ashikawa K, Isoyama S et al (1982) Mechanical interactions between four heart chambers with and without the pericardium in canine hearts. Circ Res 50(1):86–100

    Article  CAS  PubMed  Google Scholar 

  42. Brookes C, Ravn H, White P et al (1999) Acute right ventricular dilation in response to ischemia significantly impairs left ventricular systolic performance. Circulation 100(7):761–767

    Article  CAS  PubMed  Google Scholar 

  43. Alkon J, Humpl T, Manlhiot C et al (2010) Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension. Am J Cardiol 106(3):430–436

    Article  PubMed  Google Scholar 

  44. Gan CT, Lankhaar JW, Marcus JT et al (2006) Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 290(4):H1528–H1533

    CAS  PubMed  Google Scholar 

  45. Marcus JT, Gan CT, Zwanenburg JJ et al (2008) Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 51(7):750–757

    Article  PubMed  Google Scholar 

  46. Yamashita H, Onodera S, Imamoto T et al (1989) Functional and geometrical interference and interdependency between the right and left ventricle in cor pulmonale: an experimental study on simultaneous measurement of biventricular geometry of acute right ventricular pressure overload. Jpn Circ J 53(10):1237–1244

    Article  CAS  PubMed  Google Scholar 

  47. Apitz C, Honjo O, Friedberg MK et al (2012) Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg 60(1):17–23

    Article  PubMed  Google Scholar 

  48. Louie EK, Lin SS, Reynertson SI et al (1995) Pressure and volume loading of the right ventricle have opposite effects on left ventricular ejection fraction. Circulation 92(4):819–824

    Article  CAS  PubMed  Google Scholar 

  49. Lin SS, Reynertson SI, Louie EK et al (1994) Right ventricular volume overload results in depression of left ventricular ejection fraction. Implications for the surgical management of tricuspid valve disease. Circulation 90(5 Pt 2):I209–I213

    Google Scholar 

  50. Walker RE, Moran AM, Gauvreau K et al (2004) Evidence of adverse ventricular interdependence in patients with atrial septal defects. Am J Cardiol 93(11):1374–1377, A1376

    Article  PubMed  Google Scholar 

  51. Kantor PF, Redington AN (2010) Pathophysiology and management of heart failure in repaired congenital heart disease. Heart Fail Clin 6(4):497–506

    Article  PubMed  Google Scholar 

  52. Danton MH, Byrne JG, Flores KQ et al (2001) Modified Glenn connection for acutely ischemic right ventricular failure reverses secondary left ventricular dysfunction. J Thorac Cardiovasc Surg 122(1):80–91

    Article  CAS  PubMed  Google Scholar 

  53. Santamore WP, Gray LA Jr (1996) Left ventricular contributions to right ventricular systolic function during LVAD support. Ann Thorac Surg 61(1):350–356

    Article  CAS  PubMed  Google Scholar 

  54. Schranz D, Veldman A, Bartram U et al (2007) Pulmonary artery banding for idiopathic dilative cardiomyopathy: a novel therapeutic strategy using an old surgical procedure. J Thorac Cardiovasc Surg 134(3):796–797

    Article  PubMed  Google Scholar 

  55. Davlouros PA, Kilner PJ, Hornung TS et al (2002) Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol 40(11):2044–2052

    Article  PubMed  Google Scholar 

  56. Broberg CS, Aboulhosn J, Mongeon FP et al (2011) Prevalence of left ventricular systolic dysfunction in adults with repaired tetralogy of fallot. Am J Cardiol 107(8):1215–1220

    Article  PubMed  Google Scholar 

  57. Ghai A, Silversides C, Harris L et al (2002) Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol 40(9):1675–1680

    Article  PubMed  Google Scholar 

  58. Cheung EW, Liang XC, Lam WW et al (2009) Impact of right ventricular dilation on left ventricular myocardial deformation in patients after surgical repair of tetralogy of fallot. Am J Cardiol 104(9):1264–1270

    Article  PubMed  Google Scholar 

  59. Sun AM, AlHabshan F, Cheung M et al (2011) Delayed onset of tricuspid valve flow in repaired tetralogy of Fallot: an additional mechanism of diastolic dysfunction and interventricular dyssynchrony. J Cardiovasc Magn Reson 13:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwartz MC, Rome JJ, Gillespie MJ et al (2012) Relation of left ventricular end diastolic pressure to right ventricular end diastolic volume after operative treatment of tetralogy of fallot. Am J Cardiol 109(3):417–422

    Article  PubMed  Google Scholar 

  61. Kempny A, Diller GP, Orwat S et al (2012) Right ventricular-left ventricular interaction in adults with tetralogy of Fallot: a combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int J Cardiol 154(3):259–264

    Article  PubMed  Google Scholar 

  62. Chaturvedi RR, Shore DF, Lincoln C et al (1999) Acute right ventricular restrictive physiology after repair of tetralogy of Fallot: association with myocardial injury and oxidative stress. Circulation 100(14):1540–1547

    Article  CAS  PubMed  Google Scholar 

  63. Fernandes FP, Manlhiot C, Roche SL et al (2012) Impaired left ventricular myocardial mechanics and their relation to pulmonary regurgitation, right ventricular enlargement and exercise capacity in asymptomatic children after repair of tetralogy of Fallot. J Am Soc Echocardiogr 25:494–503

    Article  PubMed  Google Scholar 

  64. Roche SL, Grosse-Wortmann L, Redington AN et al (2010) Exercise induces biventricular mechanical dyssynchrony in children with repaired tetralogy of Fallot. Heart 96(24):2010–2015

    Article  PubMed  Google Scholar 

  65. Tobler D, Crean AM, Redington AN et al (2011) The left heart after pulmonary valve replacement in adults late after tetralogy of Fallot repair. Int J Cardiol 160:165–170

    Article  PubMed  Google Scholar 

  66. D'Andrea A, Caso P, Sarubbi B et al (2004) Right ventricular myocardial activation delay in adult patients with right bundle branch block late after repair of tetralogy of Fallot. Eur J Echocardiogr 5(2):123–131

    Article  PubMed  Google Scholar 

  67. Kirsh JA, Stephenson EA, Redington AN (2006) Images in cardiovascular medicine. Recovery of left ventricular systolic function after biventricular resynchronization pacing in a child with repaired tetralogy of Fallot and severe biventricular dysfunction. Circulation 113(14):e691–e692

    Article  PubMed  Google Scholar 

  68. Thambo JB, De Guillebon M, Dos Santos P et al (2011) Electrical dyssynchrony and resynchronization in tetralogy of Fallot. Heart Rhythm 8(6):909–914

    Article  PubMed  Google Scholar 

  69. Benson LN, Child JS, Schwaiger M et al (1987) Left ventricular geometry and function in adults with Ebstein’s anomaly of the tricuspid valve. Circulation 75(2):353–359

    Article  CAS  PubMed  Google Scholar 

  70. Brown ML, Dearani JA, Danielson GK et al (2008) The outcomes of operations for 539 patients with Ebstein anomaly. J Thorac Cardiovasc Surg 135(5):1120–1136, 1136 e1121-1127

    Article  PubMed  Google Scholar 

  71. Brown ML, Dearani JA, Danielson GK et al (2008) Effect of operation for Ebstein anomaly on left ventricular function. Am J Cardiol 102(12):1724–1727

    Article  PubMed  Google Scholar 

  72. Attenhofer Jost CH, Connolly HM, O’Leary PW et al (2005) Left heart lesions in patients with Ebstein anomaly. Mayo Clin Proc 80(3):361–368

    Article  PubMed  Google Scholar 

  73. Redington AN, Rigby ML, Shinebourne EA et al (1990) Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br Heart J 63(1):45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fogel MA, Weinberg PM, Fellows KE et al (1995) A study in ventricular-ventricular interaction. Single right ventricles compared with systemic right ventricles in a dual-chamber circulation. Circulation 92(2):219–230

    Article  CAS  PubMed  Google Scholar 

  75. van Son JA, Reddy VM, Silverman NH et al (1996) Regression of tricuspid regurgitation after two-stage arterial switch operation for failing systemic ventricle after atrial inversion operation. J Thorac Cardiovasc Surg 111(2):342–347

    Article  PubMed  Google Scholar 

  76. Winlaw DS, McGuirk SP, Balmer C et al (2005) Intention-to-treat analysis of pulmonary artery banding in conditions with a morphological right ventricle in the systemic circulation with a view to anatomic biventricular repair. Circulation 111(4):405–411

    Article  PubMed  Google Scholar 

  77. Walsh MA, McCrindle BW, Dipchand A et al (2009) Left ventricular morphology influences mortality after the Norwood operation. Heart 95(15):1238–1244

    Article  CAS  PubMed  Google Scholar 

  78. Fogel MA, Weinberg PM, Gupta KB et al (1998) Mechanics of the single left ventricle: a study in ventricular-ventricular interaction II. Circulation 98(4):330–338

    Article  CAS  PubMed  Google Scholar 

  79. Tanoue Y, Kado H, Maeda T et al (2004) Left ventricular performance of pulmonary atresia with intact ventricular septum after right heart bypass surgery. J Thorac Cardiovasc Surg 128(5):710–717

    Article  PubMed  Google Scholar 

  80. Tanoue Y, Kado H, Ushijima T et al (2010) Consequences of a hypertensive right ventricle on left ventricular performance of patients with pulmonary atresia and intact ventricular septum after right heart bypass surgery. Prog Pediatr Cardiol 29(1):43–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Redington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Redington, A., Mendelson, M. (2014). Intracardiac Interactions. In: Da Cruz, E., Ivy, D., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4619-3_100

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4619-3_100

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4618-6

  • Online ISBN: 978-1-4471-4619-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics