Skip to main content

Epidemiology and Diagnosis of Hypogonadism

  • Chapter
  • First Online:
Clinical Urologic Endocrinology

Abstract

Testosterone production is dependent on the intact function of the hypothalamic–pituitary–gonadal axis. Primary hypogonadism stems from testicular dysfunction and can arise from injury or chromosomal/genetic causes. Hypothalamic and/or pituitary failure cause secondary hypogonadism, most often as a result of chromosomal or genetic defects. Late-onset hypogonadism describes abnormally low testosterone in fully developed males. In the absence of a specific pathology, this is most likely caused by a combination of central and peripheral dysfunction. Late-onset hypogonadism is strongly associated with advanced age and components of the metabolic syndrome.

Signs and symptoms of hypogonadism depend on the age of onset. Testosterone deficiency in utero can cause congenital malformations of the reproductive tract, which in the most severe cases can result in a female phenotype. Hypogonadism in adolescence can result in failure to undergo a normal pubertal development, including disturbances in the development of male secondary sexual characteristics. Late-onset hypogonadism produces symptoms, including reduced libido, erectile dysfunction, and decreased energy levels and decreased vitality. The diagnosis of hypogonadism relies on a combination of patient history, physical examination, and laboratory values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

FSH:

Follicle-stimulating hormone

GnRH:

Gonadotropin-releasing hormone

HIM:

Hypogonadism in Males

HPG:

Hypothalamic–pituitary–gonadal

LH:

Luteinizing hormone

MMAS:

Massachusetts Male Aging Study

SHBG:

Sex hormone-binding globulin

References

  1. Nord C, et al. Gonadal hormones in long-term survivors 10 years after treatment for unilateral testicular cancer. Eur Urol. 2003;44(3):322–8.

    Article  PubMed  Google Scholar 

  2. Eberhard J, et al. Risk factors for post-treatment hypogonadism in testicular cancer patients. Eur J Endocrinol. 2008;158(4):561–70.

    PubMed  CAS  Google Scholar 

  3. Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88(2):622–6.

    Article  PubMed  CAS  Google Scholar 

  4. De Braekeleer M, Dao TN. Cytogenetic studies in male infertility: a review. Hum Reprod. 1991;6(2):245–50.

    PubMed  Google Scholar 

  5. Smyth CM, Bremner WJ. Klinefelter syndrome. Arch Intern Med. 1998;158(12):1309–14.

    Article  PubMed  CAS  Google Scholar 

  6. Gordon DL, et al. Pathologic testicular findings in Klinefelter’s syndrome. 47,XXY vs 46,XY-47,XXY. Arch Intern Med. 1972;130(5):726–9.

    Article  PubMed  CAS  Google Scholar 

  7. Wang C, et al. Hormonal studies in Klinefelter’s syndrome. Clin Endocrinol (Oxf). 1975;4(4):399–411.

    Article  CAS  Google Scholar 

  8. Brugh 3rd VM, Lipshultz LI. Male factor infertility: evaluation and management. Med Clin North Am. 2004;88(2):367–85.

    Article  PubMed  Google Scholar 

  9. Dohle GR, Arver S, Bettocchi C, Kliesch S, Punab M, de Ronde W. Guidelines on male hypogonadism. Uroweb. 2012. Available at http://www.uroweb.org/gls/pdf/16_Male_Hypogonadism_LR%20II.pdf. Accessed on April 1st 2012.

  10. Seminara SB, et al. Genetics of hypogonadotropic hypogonadism. J Endocrinol Invest. 2000;23(9):560–5.

    PubMed  CAS  Google Scholar 

  11. Franco B, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991;353(6344):529–36.

    Article  PubMed  CAS  Google Scholar 

  12. Smeets DF, et al. Prader-Willi syndrome and Angelman syndrome in cousins from a family with a translocation between chromosomes 6 and 15. N Engl J Med. 1992;326(12):807–11.

    Article  PubMed  CAS  Google Scholar 

  13. Burris TP, Guo W, McCabe ER. The gene responsible for adrenal hypoplasia congenita, DAX-1, encodes a nuclear hormone receptor that defines a new class within the superfamily. Recent Prog Horm Res. 1996;51:241–59; discussion 259–60.

    PubMed  CAS  Google Scholar 

  14. Jackson RS, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16(3):303–6.

    Article  PubMed  CAS  Google Scholar 

  15. Layman LC, et al. Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet. 1998;18(1):14–5.

    Article  PubMed  CAS  Google Scholar 

  16. Bhasin S. Approach to the infertile man. J Clin Endocrinol Metab. 2007;92(6):1995–2004.

    Article  PubMed  CAS  Google Scholar 

  17. Weiss J, et al. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med. 1992;326(3):179–83.

    Article  PubMed  CAS  Google Scholar 

  18. Wu SM, et al. Luteinizing hormone receptor mutations in disorders of sexual development and cancer. Front Biosci. 2000;5:D343–52.

    Article  PubMed  CAS  Google Scholar 

  19. Simoni M, et al. Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab. 1999;84(2):751–5.

    Article  PubMed  CAS  Google Scholar 

  20. Wang C, et al. Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA, and ASA recommendations. Eur Urol. 2009;55(1):121–30.

    Article  PubMed  Google Scholar 

  21. Wu FC, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93(7):2737–45.

    Article  PubMed  CAS  Google Scholar 

  22. Gray A, et al. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 1991;73(5):1016–25.

    Article  PubMed  CAS  Google Scholar 

  23. Feldman HA, et al. Age trends in the level of serum testosterone and other hormones in ­middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.

    Article  PubMed  CAS  Google Scholar 

  24. Orwoll E, et al. Testosterone and estradiol among older men. J Clin Endocrinol Metab. 2006;91(4):1336–44.

    Article  PubMed  CAS  Google Scholar 

  25. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev. 2005;26(6):833–76.

    Article  PubMed  CAS  Google Scholar 

  26. Corona G, et al. Update in testosterone therapy for men. J Sex Med. 2011;8(3):639–54; quiz 655.

    Article  PubMed  CAS  Google Scholar 

  27. Harman SM, et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86(2):724–31.

    Article  PubMed  CAS  Google Scholar 

  28. Araujo AB, et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 2004;89(12):5920–6.

    Article  PubMed  CAS  Google Scholar 

  29. Araujo AB, et al. Prevalence of symptomatic androgen deficiency in men. J Clin Endocrinol Metab. 2007;92(11):4241–7.

    Article  PubMed  CAS  Google Scholar 

  30. Bhasin S, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59.

    Article  PubMed  CAS  Google Scholar 

  31. Tajar A, et al. Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study. J Clin Endocrinol Metab. 2010;95(4):1810–8.

    Article  PubMed  CAS  Google Scholar 

  32. Wu FC, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35.

    Article  PubMed  CAS  Google Scholar 

  33. Tajar A, et al. Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS). J Clin Endocrinol Metab. 2012;97(5):1508–16.

    Article  PubMed  CAS  Google Scholar 

  34. Mulligan T, et al. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract. 2006;60(7):762–9.

    Article  PubMed  CAS  Google Scholar 

  35. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  36. Einhorn D, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003;9(3):237–52.

    PubMed  Google Scholar 

  37. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.

    Article  PubMed  CAS  Google Scholar 

  38. Alberti KG, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.

    Article  PubMed  CAS  Google Scholar 

  39. Laaksonen DE, et al. Sex hormones, inflammation and the metabolic syndrome: a population-based study. Eur J Endocrinol. 2003;149(6):601–8.

    Article  PubMed  CAS  Google Scholar 

  40. Laaksonen DE, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care. 2004;27(5):1036–41.

    Article  PubMed  CAS  Google Scholar 

  41. Haring R, et al. Prediction of metabolic syndrome by low serum testosterone levels in men: results from the study of health in Pomerania. Diabetes. 2009;58(9):2027–31.

    Article  PubMed  CAS  Google Scholar 

  42. Rodriguez A, et al. Aging, androgens, and the metabolic syndrome in a longitudinal study of aging. J Clin Endocrinol Metab. 2007;92(9):3568–72.

    Article  PubMed  CAS  Google Scholar 

  43. Chubb SA, et al. Lower sex hormone-binding globulin is more strongly associated with metabolic syndrome than lower total testosterone in older men: the Health in Men Study. Eur J Endocrinol. 2008;158(6):785–92.

    Article  PubMed  CAS  Google Scholar 

  44. Barrett-Connor E, Khaw KT, Yen SS. Endogenous sex hormone levels in older adult men with diabetes mellitus. Am J Epidemiol. 1990;132(5):895–901.

    PubMed  CAS  Google Scholar 

  45. Chang TC, Tung CC, Hsiao YL. Hormonal changes in elderly men with non-insulin-dependent diabetes mellitus and the hormonal relationships to abdominal adiposity. Gerontology. 1994;40(5):260–7.

    Article  PubMed  CAS  Google Scholar 

  46. Defay R, et al. Hormonal status and NIDDM in the European and Melanesian populations of New Caledonia: a case–control study The CALedonia DIAbetes Mellitus (CALDIA) Study Group. Int J Obes Relat Metab Disord. 1998;22(9):927–34.

    Article  PubMed  CAS  Google Scholar 

  47. Derby CA, et al. Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin Endocrinol (Oxf). 2006;65(1):125–31.

    Article  CAS  Google Scholar 

  48. Travison TG, et al. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab. 2007;92(2):549–55.

    Article  PubMed  CAS  Google Scholar 

  49. Mohr BA, et al. The effect of changes in adiposity on testosterone levels in older men: longitudinal results from the Massachusetts Male Aging Study. Eur J Endocrinol. 2006;155(3):443–52.

    Article  PubMed  CAS  Google Scholar 

  50. Kupelian V, et al. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab. 2006;91(3):843–50.

    Article  PubMed  CAS  Google Scholar 

  51. Hall SA, et al. Correlates of low testosterone and symptomatic androgen deficiency in a population-based sample. J Clin Endocrinol Metab. 2008;93(10):3870–7.

    Article  PubMed  CAS  Google Scholar 

  52. Corona G, et al. Testosterone and metabolic syndrome: a meta-analysis study. J Sex Med. 2011;8(1):272–83.

    Article  PubMed  CAS  Google Scholar 

  53. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008;93(1):68–75.

    Article  PubMed  CAS  Google Scholar 

  54. Khaw KT, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation. 2007;116(23):2694–701.

    Article  PubMed  CAS  Google Scholar 

  55. Haring R, et al. Low serum testosterone levels are associated with increased risk of mortality in a population-based cohort of men aged 20–79. Eur Heart J. 2010;31(12):1494–501.

    Article  PubMed  CAS  Google Scholar 

  56. Menke A, et al. Sex steroid hormone concentrations and risk of death in US men. Am J Epidemiol. 2010;171(5):583–92.

    Article  PubMed  Google Scholar 

  57. Yeap BB, et al. Lower testosterone levels predict incident stroke and transient ischemic attack in older men. J Clin Endocrinol Metab. 2009;94(7):2353–9.

    Article  PubMed  CAS  Google Scholar 

  58. Barrett-Connor E, Khaw KT. Endogenous sex hormones and cardiovascular disease in men. A prospective population-based study. Circulation. 1988;78(3):539–45.

    Article  PubMed  CAS  Google Scholar 

  59. Contoreggi CS, et al. Plasma levels of estradiol, testosterone, and DHEAS do not predict risk of coronary artery disease in men. J Androl. 1990;11(5):460–70.

    PubMed  CAS  Google Scholar 

  60. Yarnell JW, et al. Endogenous sex hormones and ischemic heart disease in men. The Caerphilly prospective study. Arterioscler Thromb. 1993;13(4):517–20.

    Article  PubMed  CAS  Google Scholar 

  61. Arnlov J, et al. Endogenous sex hormones and cardiovascular disease incidence in men. Ann Intern Med. 2006;145(3):176–84.

    PubMed  CAS  Google Scholar 

  62. Abbott RD, et al. Serum estradiol and risk of stroke in elderly men. Neurology. 2007;68(8):563–8.

    Article  PubMed  CAS  Google Scholar 

  63. Vikan T, et al. Endogenous sex hormones and the prospective association with cardiovascular disease and mortality in men: the Tromso Study. Eur J Endocrinol. 2009;161(3):435–42.

    Article  PubMed  CAS  Google Scholar 

  64. Araujo AB, et al. Sex steroids and all-cause and cause-specific mortality in men. Arch Intern Med. 2007;167(12):1252–60.

    Article  PubMed  CAS  Google Scholar 

  65. Araujo AB, et al. Clinical review: endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(10):3007–19.

    Article  PubMed  CAS  Google Scholar 

  66. Corona G, et al. Low testosterone is associated with an increased risk of MACE lethality in subjects with erectile dysfunction. J Sex Med. 2010;7(4 Pt 1):1557–64.

    Article  PubMed  CAS  Google Scholar 

  67. Hyde Z, et al. Low free testosterone predicts frailty in older men: the health in men study. J Clin Endocrinol Metab. 2010;95(7):3165–72.

    Article  PubMed  CAS  Google Scholar 

  68. Nguyen PL, et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA. 2011;306(21):2359–66.

    Article  PubMed  CAS  Google Scholar 

  69. Nguyen PL, et al. Coronary revascularization and mortality in men with congestive heart failure or prior myocardial infarction who receive androgen deprivation. Cancer. 2011;117(2):406–13.

    Article  PubMed  Google Scholar 

  70. Nguyen PL, et al. Influence of androgen deprivation therapy on all-cause mortality in men with high-risk prostate cancer and a history of congestive heart failure or myocardial infarction. Int J Radiat Oncol Biol Phys. 2012;82(4):1411–6.

    Article  PubMed  Google Scholar 

  71. Mulligan T, et al. Two-week pulsatile gonadotropin releasing hormone infusion unmasks dual (hypothalamic and Leydig cell) defects in the healthy aging male gonadotropic axis. Eur J Endocrinol. 1999;141(3):257–66.

    Article  PubMed  CAS  Google Scholar 

  72. Basaria S, et al. Long-term effects of androgen deprivation therapy in prostate cancer patients. Clin Endocrinol (Oxf). 2002;56(6):779–86.

    Article  CAS  Google Scholar 

  73. Filippi S, et al. Testosterone partially ameliorates metabolic profile and erectile responsiveness to PDE5 inhibitors in an animal model of male metabolic syndrome. J Sex Med. 2009;6(12):3274–88.

    Article  PubMed  CAS  Google Scholar 

  74. Winters SJ, Kelley DE, Goodpaster B. The analog free testosterone assay: are the results in men clinically useful? Clin Chem. 1998;44(10):2178–82.

    PubMed  CAS  Google Scholar 

  75. de Ronde W, de Jong FH. Aromatase inhibitors in men: effects and therapeutic options. Reprod Biol Endocrinol. 2011;9:93.

    Article  PubMed  Google Scholar 

  76. McConway MG, et al. Differences in circulating concentrations of total, free and bound leptin relate to gender and body composition in adult humans. Ann Clin Biochem. 2000;37(Pt 5):717–23.

    Article  PubMed  CAS  Google Scholar 

  77. Bhatia V, et al. Low testosterone and high C-reactive protein concentrations predict low hematocrit in type 2 diabetes. Diabetes Care. 2006;29(10):2289–94.

    Article  PubMed  CAS  Google Scholar 

  78. Grossmann M, et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J Clin Endocrinol Metab. 2008;93(5):1834–40.

    Article  PubMed  CAS  Google Scholar 

  79. Watanobe H, Hayakawa Y. Hypothalamic interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, mediate the endotoxin-induced suppression of the reproductive axis in rats. Endocrinology. 2003;144(11):4868–75.

    Article  PubMed  CAS  Google Scholar 

  80. Russell SH, et al. The in vitro role of tumour necrosis factor-alpha and interleukin-6 in the hypothalamic-pituitary gonadal axis. J Neuroendocrinol. 2001;13(3):296–301.

    Article  PubMed  CAS  Google Scholar 

  81. Shafik A, Olfat S. Scrotal lipomatosis. Br J Urol. 1981;53(1):50–4.

    Article  PubMed  CAS  Google Scholar 

  82. Smith KW, Feldman HA, McKinlay JB. Construction and field validation of a self-administered screener for testosterone deficiency (hypogonadism) in ageing men. Clin Endocrinol (Oxf). 2000;53(6):703–11.

    Article  CAS  Google Scholar 

  83. Emmelot-Vonk MH, et al. Low testosterone concentrations and the symptoms of testosterone deficiency according to the Androgen Deficiency in Ageing Males (ADAM) and Ageing Males’ Symptoms rating scale (AMS) questionnaires. Clin Endocrinol (Oxf). 2011;74(4):488–94.

    Article  CAS  Google Scholar 

  84. Zitzmann M. Pharmacogenetics of testosterone replacement therapy. Pharmacogenomics. 2009;10(8):1341–9.

    Article  PubMed  CAS  Google Scholar 

  85. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–72.

    Article  PubMed  CAS  Google Scholar 

  86. Diver MJ, et al. Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clin Endocrinol (Oxf). 2003;58(6):710–7.

    Article  CAS  Google Scholar 

  87. Bhasin S, et al. Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J Clin Endocrinol Metab. 2011;96(8):2430–9.

    Article  PubMed  CAS  Google Scholar 

  88. Vesper HW, et al. Interlaboratory comparison study of serum total testosterone [corrected] measurements performed by mass spectrometry methods. Steroids. 2009;74(6):498–503.

    Article  PubMed  CAS  Google Scholar 

  89. Sodergard R, et al. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem. 1982;16(6):801–10.

    Article  PubMed  CAS  Google Scholar 

  90. Wheeler MJ, Nanjee MN. A steady-state gel filtration method on micro-columns for the measurement of percentage free testosterone in serum. Ann Clin Biochem. 1985;22(Pt 2):185–9.

    PubMed  CAS  Google Scholar 

  91. Sartorius G, et al. Predictive accuracy and sources of variability in calculated free testosterone estimates. Ann Clin Biochem. 2009;46(Pt 2):137–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana A. Ohl M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Fode, M., Quallich, S.A., Reisman, Y., Sønksen, J., Ohl, D.A. (2013). Epidemiology and Diagnosis of Hypogonadism. In: Kavoussi, P., Costabile, R., Salonia, A. (eds) Clinical Urologic Endocrinology. Springer, London. https://doi.org/10.1007/978-1-4471-4405-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4405-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4404-5

  • Online ISBN: 978-1-4471-4405-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics