Skip to main content

Stone Composition and Morphology: A Window on Etiology

  • Chapter
  • First Online:
Urolithiasis

Abstract

Physical methods, namely, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) reliably identify specific forms of nephrolithiasis involving a single component such as cystine, 2,8-dihydroxyadenine, xanthine, uric acid, struvite, and drugs as well as common-type stones made of calcium oxalate (CaOx) and/or calcium phosphate. However, for the latter, these methods do not provide etiologic information in clinical practice because a same-stone composition may be the result of very different lithogenic processes. A comprehensive stone analysis method combining morphological examination followed by XRD or FTIR analysis of the core, middle layers, and surface of calculi provides a more complete contribution to etiologic diagnosis than compositional analysis alone. Using this method, stones may be classified into 7 types subdivided in 22 subtypes. Among CaOx stones, type Ic COM calculi are pathognomonic of primary hyperoxaluria. Among calcium phosphate stones, a peculiar morphology of carbapatite stones (type IVa2) is closely associated with distal tubular acidosis, whereas in primary hyperparathyroidism calculi are predominantly made of carbapatite mixed with weddellite or of brushite (type IVd). Ammonium urate calculi of type IIId are found in patients with low phosphate intake and chronic diarrhea due to laxative abuse or in children with endemic urolithiasis. Uric acid calculi are mainly suggestive of low urine pH related to insulin resistance as observed in metabolic syndrome or type 2 diabetes or in case of colon resection. Among common, idiopathic CaOx stones, predominance of whewellite (type I morphology) is mainly associated with high urinary oxalate concentration, whereas predominance of weddellite (type II morphology) is associated with hypercalciuric states. This method is of decisive interest for early diagnosis—and therefore proper treatment—of severe diseases such as primary hyperoxaluria and 2,8-dihydroxyadeninuria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daudon M, Réveillaud RJ. Whewellite and weddellite: toward different etiopathogenesis. Interest of the morphological typing of the stones. Nephrologie. 1984;5:195–201 (in French).

    PubMed  CAS  Google Scholar 

  2. Daudon M, Bader CA, Jungers P. Urinary calculi: review of classification methods and correlations with etiology. Scanning Microsc. 1993;7:1081–106.

    PubMed  CAS  Google Scholar 

  3. Asplin JR, Lingeman J, Kahnoski R, Mardis H, Parks JH, Coe FL. Metabolic urinary correlates of calcium oxalate dihydrate in renal stones. J Urol. 1998;159:664–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bouzidi H, Lacour B, Daudon M. 2,8-dihydroxyadenine nephrolithiasis: from diagnosis to therapy. Ann Biol Clin (Paris). 2007;65:585–92.

    CAS  Google Scholar 

  5. Ceballos-Picot I, Perignon JL, Hamet M, et al. 2,8-dihydroxyadenine urolithiasis, an underdiagnosed disease. Lancet. 1992;339:1050–1.

    Article  PubMed  CAS  Google Scholar 

  6. Simmonds HA. 2,8-dihydroxyadenine lithiasis. Clin Chim Acta. 1986;160:103–8.

    Article  PubMed  CAS  Google Scholar 

  7. Couzigou C, Daudon M, Meynard JL, et al. Urolithiasis in HIV-positive patients treated with atazanavir. Clin Infect Dis. 2007;45:e105–8.

    Article  PubMed  CAS  Google Scholar 

  8. Daudon M, Estépa L, Viard JP, Joly D, Jungers P. Urinary stones in HIV-1-positive patients treated with indinavir. Lancet. 1997;349:1294–5.

    Article  PubMed  CAS  Google Scholar 

  9. Daudon M, Jungers P. Drug-induced renal calculi: epidemiology, prevention and management. Drugs. 2004;64:245–75.

    Article  PubMed  Google Scholar 

  10. Daudon M, Réveillaud RJ. Methods of urinary calculus analysis: a critical review. Adv Nephrol. 1986;15:219–44.

    CAS  Google Scholar 

  11. Hesse A, Kruse R, Geilenkeuser WJ, Schmidt M. Quality control in urinary stone analysis: results of 44 ring trials (1980–2001). Clin Chem Lab Med. 2005;43:298–303.

    Article  PubMed  CAS  Google Scholar 

  12. Schneider HJ. Technik der Harnsteinanalyse. Leipzig: Thieme; 1974.

    Google Scholar 

  13. Bastian PJ, Lorken M, Euler H, Lummen G, Bastian HP. Results of the evaluation of 85,337 urinary stone analyses. Aktuelle Urol. 2008;39:298–304.

    Article  PubMed  CAS  Google Scholar 

  14. Leusmann DB, Blaschke R, Schmandt W. Results of 5035 stone analysis: a contribution to epidemiology stone disease. Scand J Urol Nephrol. 1990;24:205–10.

    Article  PubMed  CAS  Google Scholar 

  15. Herring LC. Observations on the analysis of ten thousand urinary calculi. J Urol. 1962;88:545–56.

    PubMed  CAS  Google Scholar 

  16. Mandel N, Mandel I, Fryjoff K, Rejniak T, Mandel G. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J Urol. 2003;169:2026–9.

    Article  PubMed  Google Scholar 

  17. Otnes B, Montgomery O. Method and reliability of crystallographic stone analysis. Invest Urol. 1980;17:85–92.

    Google Scholar 

  18. Prien EL, Frondel C. Studies in urolithiasis. I. The composition of urinary calculi. J Urol. 1947;57:949–91.

    PubMed  CAS  Google Scholar 

  19. Beischer D. Analysis of renal calculi by infrared spectroscopy. J Urol. 1955;73:653–9.

    PubMed  CAS  Google Scholar 

  20. Berthelot M, Cornu G, Daudon M, Helbert M, Laurence C. Computer-aided infrared analysis of urinary calculi. Clin Chem. 1987;33:2070–3.

    PubMed  CAS  Google Scholar 

  21. Daudon M, Protat MF, Réveillaud RJ. Analysis of calculi by infrared spectroscopy. Advantages and limits of the method. Ann Biol Clin. 1978;36:475–89 (in French).

    CAS  Google Scholar 

  22. Estepa L, Daudon M. Contribution of Fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy. 1997;3:347–69.

    Article  CAS  Google Scholar 

  23. Maurice-Estepa L, Levillain P, Lacour B, Daudon M. Infrared analysis of urinary stones: a trial of automated identification. Clin Chem Lab Med. 1999;37:1043–52.

    Article  Google Scholar 

  24. Tsay YC. Application of infrared spectroscopy to urinary calculi. J Urol. 1961;86:838–54.

    PubMed  CAS  Google Scholar 

  25. Volmer M, Wolthers BG, Metting HJ, de Haan TH, Coenegracht PM, van der Slik W. Artificial neural network predictions of urinary calculus compositions analyzed with infrared spectroscopy. Clin Chem. 1994;40:1692–7.

    PubMed  CAS  Google Scholar 

  26. Daudon M, Protat MF, Réveillaud RJ, Jaeschke-Boyer H. Infrared spectrometry and Raman microprobe in the analysis of urinary calculi. Kidney Int. 1983;23:842–50.

    Article  PubMed  CAS  Google Scholar 

  27. Hidalgo A, Santos M, Carmina P, Garcia-Ramos JV, Bellanato J, Cifuentes Delatte L. Analisis de calculos urinarios por espectroscopia infraroja y Raman. Madrid: Instituto de Optica (Daza de Valdes) C.S.I.C; 1983.

    Google Scholar 

  28. Hong TD, Phat D, Plaza P, Daudon M, Dao NQ. Identification of urinary calculi by Raman laser fiber optics spectroscopy. Clin Chem. 1992;38:292–8.

    PubMed  CAS  Google Scholar 

  29. Nguyen Quy D, Daudon M. Infrared and Raman spectra of calculi. Paris: Elsevier; 1997.

    Google Scholar 

  30. Sudlow K, Woolf A. Identification of renal calculi by their Raman spectra. Clin Chim Acta. 1991;203:387–93.

    Article  PubMed  CAS  Google Scholar 

  31. Kaloustian J, El-Moselhy TF, Portugal H. Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: the use of simultaneous thermal analysis in urinary calculi. Clin Chim Acta. 2003;334:117–29.

    Article  PubMed  CAS  Google Scholar 

  32. Rose GA, Woodfine C. The thermogravimetric analysis of renal stones (in clinical practice). Br J Urol. 1976;48:403–12.

    Article  PubMed  CAS  Google Scholar 

  33. Sharma RN, Shah I, Gupta S, Sharma P, Beigh AA. Thermogravimetric analysis of urinary stones. Br J Urol. 1989;64:564–6.

    Article  PubMed  CAS  Google Scholar 

  34. Tozuka K, Konjiki T, Sudo T. Study of passed stones by means of X-rays, infrared and thermal analyses. J Urol. 1983;130:1119–22.

    PubMed  CAS  Google Scholar 

  35. Saupe E. Rontgendiagramme von menschlichen Korkengeweben und Konkrementen. Fortsch Geb Rontgenst. 1931;44:204–11.

    CAS  Google Scholar 

  36. Hesse A, Sanders G. Atlas f infrared spectra for the analysis of urinary concrements. Stuttgart: Georg Thieme; 1988.

    Google Scholar 

  37. Oliver LK, Sweet RV. A system of interpretation of infrared spectra of calculi for routine use in the clinical laboratory. Clin Chim Acta. 1976;72:17–32.

    Article  PubMed  CAS  Google Scholar 

  38. Krambeck AE, Lingeman JE, McAteer JA, Williams Jr JC. Analysis of mixed stones is prone to error: a study with US laboratories using micro CT for verification of sample content. Urol Res. 2010;38:469–75.

    Article  PubMed  Google Scholar 

  39. Siener R, Buchholz N, Daudon M, et al. Quality assessment of urinary stone analysis: results of a multicenter study of laboratories in Europe. Eur Urol Suppl. 2011;10:463 (A).

    Google Scholar 

  40. Evan AP, Lingeman JE, Coe FL, et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003;111:607–16.

    PubMed  CAS  Google Scholar 

  41. Kuo RL, Lingeman JE, Evan AP, et al. Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int. 2003;64:2150–4.

    Article  PubMed  Google Scholar 

  42. Daudon M, Bouzidi H, Bazin D. Composition and morphology of phosphate stones and their relation with etiology. Urol Res. 2010;38:459–67.

    Article  PubMed  CAS  Google Scholar 

  43. Gault MH, Parfrey PS, Robertson WG. Idiopathic calcium phosphate nephrolithiasis. Nephron. 1988;48:265–73.

    Article  PubMed  CAS  Google Scholar 

  44. Gault MH, Chafe LL, Morgan JM, et al. Comparison of patients with idiopathic calcium phosphate and CaOx stones. Medicine (Baltimore). 1991;70:345–59.

    CAS  Google Scholar 

  45. Bouzidi H, de Brauwere D, Daudon M. Does urinary stone composition and morphology help for prediction of primary hyperparathyroidism? Nephrol Dial Transplant. 2011;26:565–72.

    Article  PubMed  CAS  Google Scholar 

  46. Maurice-Estepa L, Levillain P, Lacour B, et al. Crystalline phase differentiation in urinary calcium phosphate and magnesium phosphate calculi. Scand J Urol Nephrol. 1999;33:299–305.

    Article  PubMed  CAS  Google Scholar 

  47. Méria P, Hadjadj H, Jungers P, Daudon M, and Members of the Urolithiasis Committee of the French Urological Association. Stone formation and pregnancy: pathophysiological insights gained from morphoconstitutional stone analysis. J Urol. 2010;183:1412–6.

    Article  PubMed  Google Scholar 

  48. Griffith DP, Osborne CA. Infection (urease) stones. Miner Electrolyte Metab. 1987;13:278–85.

    PubMed  CAS  Google Scholar 

  49. Carpentier X, Daudon M, Traxer O, Jungers P, Mazouyes A, Matzen G, Véron E, Bazin D. Relationships between the carbonation rate of carbapatite, morphological characteristics of calcium phosphate stones and etiology. Urology. 2009;73:968–75.

    Article  PubMed  Google Scholar 

  50. Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res. 2006;34:193–9.

    Article  PubMed  Google Scholar 

  51. Daudon M, Jungers P. Mellitus diabetes and calculi. Feuillets de Biologie. 2001;42:37–9 (in French).

    Google Scholar 

  52. Daudon M, Lacour B, Jungers P. High prevalence of uric acid calculi in diabetic stone formers. Nephrol Dial Transplant. 2005;20:468–9.

    Article  PubMed  CAS  Google Scholar 

  53. Daudon M, Traxer O, Conort P, Lacour B, Jungers P. Type 2 diabetes increases the risk for uric acid stones. J Am Soc Nephrol. 2006;17:2026–33.

    Article  PubMed  CAS  Google Scholar 

  54. Pak CY, Sakhaee K, Moe O, et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 2003;61:523–7.

    Article  PubMed  Google Scholar 

  55. Klohn M, Bolle JF, Reverdin NP, Susini A, Baud CA, Graber P. Ammonium urate urinary stones. Urol Res. 1986;14:315–8.

    Article  PubMed  CAS  Google Scholar 

  56. Miano R, Germani S, Vespasiani G. Stones and urinary tract infections. Urol Int. 2007;79 Suppl 1:32–6.

    Article  PubMed  Google Scholar 

  57. Dick WH, Lingeman JE, Preminger GM, Smith LH, Wilson DM, Shirrell WL. Laxative abuse as a cause for ammonium urate renal calculi. J Urol. 1990;143:244–7.

    PubMed  CAS  Google Scholar 

  58. Hara N, Koike H. A case of ammonium urate urinary stone. Hinyokika Kiyo. 2004;50:351–3 (in Japanese).

    PubMed  Google Scholar 

  59. Kato Y, Hou K, Saga Y, Yamaguchi S, Yachiku S, Kawakami N. Ammonium acid urate stone due to laxative abuse: a case report. Hinyokika Kiyo. 2004;50:799–803 (in Japanese).

    PubMed  Google Scholar 

  60. Kamoun A, Daudon M, Abdelmoula J, et al. Urolithiasis in Tunisian children: a study of 120 cases based on stone composition. Pediatr Nephrol. 1999;13:920–5.

    Article  PubMed  CAS  Google Scholar 

  61. Thambi Dorai CR, Dewan PA, Boucaut HA, Ehrlich J. Urolithiasis in Australian aboriginal children. Aust N Z J Surg. 1994;64:99–101.

    Article  PubMed  CAS  Google Scholar 

  62. Hesse A, Brandle E, Wilbert D, Kohrmann KU, Alken P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol. 2003;44:709–13.

    Article  PubMed  CAS  Google Scholar 

  63. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63:1817–23.

    Article  PubMed  Google Scholar 

  64. Yoshida O, Okada Y. Epidemiology of urolithiasis in Japan: a chronological and geographical study. Urol Int. 1990;45:104–11.

    Article  PubMed  CAS  Google Scholar 

  65. Trinchieri A. Epidemiological trends in urolithiasis: impact on our health care systems. Urol Res. 2006;34:151–6.

    Article  PubMed  Google Scholar 

  66. Lieske JC, Pena de la Vega LS, Slezak JM, et al. Renal stone epidemiology in Rochester, Minnesota: an update. Kidney Int. 2006;69:760–4.

    Article  PubMed  CAS  Google Scholar 

  67. Scales Jr CD, Curtis LH, Norris RD, et al. Changing gender prevalence of stone disease. J Urol. 2007;177:979–82.

    Article  PubMed  Google Scholar 

  68. Yoshida O, Terai A, Ohkawa T, Okada Y. National trend of the incidence of urolithiasis in Japan from 1965 to 1995. Kidney Int. 1999;56:1899–904.

    Article  PubMed  CAS  Google Scholar 

  69. Daudon M, Traxer O, Williams JC, Bazin DC. Randall’s plaques. In: Rao PN, Preminger GM, Kavanagh JP, editors. Urinary tract stone disease. London: Springer; 2011. p. 103–12.

    Google Scholar 

  70. Brien G, Schubert G, Bick C. 10000 analysis of urinary calculi using X-ray diffraction and polarizing microscopy. Eur Urol. 1982;8:251–6.

    PubMed  CAS  Google Scholar 

  71. Daudon M, Donsimoni R, Hennequin C, Fellahi S, Le Moël G, Paris M, Troupel S, Lacour B. Sex- and age-related composition of 10,617 calculi analyzed by infrared spectroscopy. Urol Res. 1995;23:319–26.

    Article  PubMed  CAS  Google Scholar 

  72. Balla AA, Salah AM, Khattab AH, et al. Mineral composition of renal stones from the Sudan. Urol Int. 1998;61:154–6.

    Article  PubMed  CAS  Google Scholar 

  73. Chou YH, Li CC, Wu WJ, et al. Urinary stone analysis of 1,000 patients in southern Taiwan. Kaohsiung J Med Sci. 2007;23:63–6.

    Article  PubMed  CAS  Google Scholar 

  74. Daudon M, Traxer O, Lechevallier E, Saussine C. Epidemiology of urolithiasis. Prog Urol. 2008;18:802–14 (in French).

    Article  PubMed  CAS  Google Scholar 

  75. Jing Z, GuoZeng W, Ning J, JiaWei Y, Yan G, Fang Y. Analysis of urinary calculi composition by infrared spectroscopy: a prospective study of 625 patients in eastern China. Urol Res. 2010;38:111–5.

    Article  PubMed  CAS  Google Scholar 

  76. Prasongwatana W, Bovornpadungkitti S, Chotikawanich E, Pachitrat K, Suwanatrai S, Sriboonlue P. Chemical components of urinary stones according to age and sex of adult patients. J Med Assoc Thai. 2008;91:1589–94.

    PubMed  Google Scholar 

  77. Tanthanuch M, Apiwatgaroon A, Pripatnanont C. Urinary tract calculi in southern Thailand. J Med Assoc Thai. 2005;88:80–5.

    PubMed  Google Scholar 

  78. Kuruma H, Arakawa T, Kubo S, et al. Ammonium acid urate urolithiasis in Japan. Int J Urol. 2006;13:498–501.

    Article  PubMed  CAS  Google Scholar 

  79. Schneider HJ, Berg C. Epidemiologische aussagen zum harnsteinleiden auf der grundlage von 100,000 harnsteinanalysen. Unter besonderer berücksichtigung der rezidive. Fortschr Urol Nephrol. 1981;17:33–9.

    Google Scholar 

  80. Suzuki K, Yamashita Y, Matuzaki J. Clinical assessment of ammonium acid urate urinary calculi. Hinyokika Kiyo. 2010;56:5–9 (in Japan).

    PubMed  Google Scholar 

  81. Kheradpir MH, Armbruster T. Childhood urolithiasis in Iran :a comparative study on the calculi composition of 121 cases. Z Kinderchir. 1985;40:163–9.

    PubMed  CAS  Google Scholar 

  82. Pandeya A, Prajapati R, Panta P, Regmi A. Assessment of kidney stone and prevalence of its chemical composition. Nepal Med Coll J. 2010;12:190–2.

    PubMed  CAS  Google Scholar 

  83. Robertson WG, Peacock M, Heyburn PJ. Clinical and metabolic aspects of urinary stone disease in Leeds. Scand J Urol Nephrol Suppl. 1980;53:199–206.

    PubMed  CAS  Google Scholar 

  84. Daudon M, Doré JC, Jungers P, Lacour B. Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urol Res. 2004;23:241–7.

    Google Scholar 

  85. Trinchieri A, Castelnuovo C, Lizzano R, Zanetti G. Calcium stone disease: a multiform reality. Urol Res. 2005;33:194–8.

    Article  PubMed  CAS  Google Scholar 

  86. Daudon M, Bounxouei B, Santa Cruz F, et al. Composition of renal stones currently observed in non-industrialized countries. Prog Urol. 2004;14:1151–61 (in French).

    PubMed  Google Scholar 

  87. Asper R. Epidemiology and socioeconomic aspects of urolithiasis. Urol Res. 1984;12:1–5.

    Article  PubMed  CAS  Google Scholar 

  88. Johnson O. Vesical calculus in Ethiopian children. Ethiop Med J. 1995;33:31–5.

    PubMed  CAS  Google Scholar 

  89. Rizvi SA, Naqvi SA, Hussain Z, et al. Management of pediatric urolithiasis in Pakistan: experience with 1,440 children. J Urol. 2003;169:634–7.

    Article  PubMed  CAS  Google Scholar 

  90. Sarkissian A, Babloyan A, Arikyants N, Hesse A, Blau N, Leumann E. Pediatric urolithiasis in Armenia: a study of 198 patients observed from 1991 to 1999. Pediatr Nephrol. 2001;16:728–32.

    Article  PubMed  CAS  Google Scholar 

  91. Marrakchi O, Belhaj R, Bahlous A, et al. La lithiase urinaire chez l’enfant Tunisien. Etude à propos de 187 cas. Prog Urol. 2008;18:1056–61.

    Article  PubMed  CAS  Google Scholar 

  92. Meiouet F, El Kabbaj S. Composition of urinary calculi in Moroccan children and interest of morpho-constitutional analysis in the etiology of pediatric urolithiasis. In: Pediatric nephrology symposium. Marrakech, 25–27 Nov 2010.

    Google Scholar 

  93. Alaya A, Nouri A, Najjar MF. Prevalence and composition of urolithiasis in a Tunisian pediatric population. Prog Urol. 2009;19:395–400.

    Article  PubMed  CAS  Google Scholar 

  94. Angwafo III FF, Daudon M, Wonkam A, Kuwong PM, Kropp KA. Pediatric urolithiasis in sub-Saharan Africa: a comparative study in two regions of Cameroon. Eur Urol. 2000;37:106–11.

    Article  PubMed  Google Scholar 

  95. Oussama A, Kzaiber F, Mernari B, Semmoud A, Daudon M. Analysis of calculi by infrared spectroscopy in children from the Moroccan mid-atlas region. Ann Urol (Paris). 2000;34:384–90 (in French).

    CAS  Google Scholar 

  96. Rizvi SAH, Naqvi SAA, Hashmi ZHA, et al. Pediatric urolithiasis: developing nation perspectives. J Urol. 2002;168:1522–5.

    Article  PubMed  CAS  Google Scholar 

  97. Daudon M, Jungers P, Bazin D. Stone morphology: implication for pathogenesis. In: Evan AP, Lingeman JE, McAteer JA and Williams JC Jr, editors. Renal stone disease 2, American Institute of Physics conference proceedings. Melville; 2008, 1049, p. 199–215.

    Google Scholar 

  98. Daudon M, Jungers P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol. 2004;98:31–6.

    Article  CAS  Google Scholar 

  99. Daudon M, Jungers P, Bazin D. Peculiar morphology of stones in primary hyperoxaluria. N Engl J Med. 2008;359:100–2.

    Article  PubMed  CAS  Google Scholar 

  100. Randall A. An hypothesis for the origin of renal calculus. N Engl J Med. 1936;214:234–7.

    Article  Google Scholar 

  101. Randall A. The origin and growth of renal calculi. Ann Surg. 1937;105:1009–27.

    Article  PubMed  CAS  Google Scholar 

  102. Matlaga BR, Williams Jr JC, Kim SC, et al. Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol. 2006;175:1720–4.

    Article  PubMed  Google Scholar 

  103. Cifuentes Delatte L, Minon-Cifuentes JL, Medina JA. Papillary stones: calcified renal tubules in Randall’s plaques. J Urol. 1985;133:490–4.

    PubMed  CAS  Google Scholar 

  104. Cifuentes Delatte L, Minon-Cifuentes J, Medina JA. New studies on papillary calculi. J Urol. 1987;137:1024–9.

    PubMed  CAS  Google Scholar 

  105. Daudon M. Epidemiology of nephrolithiasis in France. Ann Urol. 2005;39:209–31 (in French).

    Article  CAS  Google Scholar 

  106. Evan AP, Coe FL, Lingeman JE, et al. Mechanism of formation of human CaOx renal stones on Randall’s plaque. Anat Rec (Hoboken). 2007;290:1315–23.

    Article  CAS  Google Scholar 

  107. Daudon M, Traxer O, Jungers P, et al. Stone morphology suggestive of Randall’s plaque. In: Evan AP, Lingeman JE, Williams JC Jr, editors. Renal stone disease, American Institute of Physics conference proceedings. Melville; 2007, 900, p. 26–34.

    Google Scholar 

  108. Grases F, Costa-Bauza A, Ramis M, Montesinos V, Conte A. Simple classification of renal calculi closely related to their micromorphology and etiology. Clin Chim Acta. 2002;322:29–36.

    Article  PubMed  CAS  Google Scholar 

  109. Matlaga BR, Coe FL, Evan AP, Lingeman JE. The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol. 2007;177:31–8.

    Article  PubMed  Google Scholar 

  110. Gault MH, Chafe L. Relationship of frequency, age, sex, stone weight and composition in 15,624 stones: comparison of results for 1980 to 1983 and 1995 to 1998. J Urol. 2000;164:302–7.

    Article  PubMed  CAS  Google Scholar 

  111. Konnak JW, Kogan BA, Lau K. Renal calculi associated with incomplete distal renal tubular acidosis. J Urol. 1982;128:900–2.

    PubMed  CAS  Google Scholar 

  112. Evan AP, Lingeman J, Coe F, et al. Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int. 2007;71:795–801.

    Article  PubMed  CAS  Google Scholar 

  113. Eriksson P, Denneberg T, Tiselius HG. Risk factors of calcium stone formation in patients with primary Sjogren’s syndrome. Urol Res. 1996;24:39–43.

    Article  PubMed  CAS  Google Scholar 

  114. Pak CY, Poindexter JR, Adams-Huet B, et al. Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med. 2003;115:26–32.

    Article  PubMed  CAS  Google Scholar 

  115. Parks JH, Coe FL, Evan AP, Worcester EM. Clinical and laboratory characteristics of calcium stone-formers with and without primary hyperparathyroidism. BJU Int. 2009;103:670–8.

    Article  PubMed  Google Scholar 

  116. Evan AE, Lingeman JE, Coe FL, et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 2008;74:223–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Daudon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Daudon, M., Jungers, P. (2012). Stone Composition and Morphology: A Window on Etiology. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics