Skip to main content

Respiratory Toxicity of Carbon Nanotubes

  • Chapter
  • First Online:
Nanomaterials: A Danger or a Promise?
  • 2811 Accesses

Abstract

Carbon nanotubes (CNT) are emblematic nanomaterials, and have generated a highly competitive international scientific research activity. Since their initial description in 1991, the understanding of their unique physicochemical properties led to a large number of actual applications and uses, as well as future developments. Because of these promising applications, there is an increasing concern regarding the consequences that could result from human exposure to CNT. Analysis of the existing literature shows that respiratory exposure to CNT can lead to the occurrence of pulmonary inflammation, the formation of granuloma, and the development of pulmonary fibrosis. The exact determinants of these effects still remain to be clearly identified, although intrinsic physicochemical characteristics of CNT (i.e. length, dispersion status, and residual catalyst content) seem to be of importance. Several critical issues still remain to be solved, such as the translocation of CNT outside the lungs and the occurrence of their biotransformation, which should open a new understanding to the respiratory effects of CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witschger O, Fabries JF (2005) Particules ultra-fines et santé au travail, 2—Soures et caractérisation de l’exposition. Hygiène et Sécurité au travail 199(ND 2227):37–54

    Google Scholar 

  2. Anderson PJ, Wilson JD et al (1990) Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest 97(5):1115–1120

    Article  Google Scholar 

  3. Card JW, Zeldin DC et al (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295(3):L400–L411

    Article  Google Scholar 

  4. Chalupa DC, Morrow PE et al (2004) Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 112(8):879–882

    Article  Google Scholar 

  5. Farkas A, Balashazy I et al (2006) Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods. J Aerosol Med 19(3):329–343

    Article  Google Scholar 

  6. Lam C, James JH et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  Google Scholar 

  7. Chou CC, Hsiao HY et al (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8(2):437–445

    Article  Google Scholar 

  8. Tabet L, Bussy C et al (2011) Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Part Fibre Toxicol 8(1):3

    Article  Google Scholar 

  9. Ryman-Rasmussen JP, Tewksbury EW et al (2008) Inhaled multi-walled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol 40:349–358

    Article  Google Scholar 

  10. Shvedova AA, Kisin ER et al (2008) Inhalation versus aspiration of single walled carbon nanotubes in C57bl/6 mice: inflammation, fibrosis, oxidative stress and mutagenesis. Am J Physiol Lung Cell Mol Physiol 95:L552–L565

    Article  Google Scholar 

  11. Shvedova AA, Kisin ER et al (2008) Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol 231(2):235–240

    Article  Google Scholar 

  12. Ryman-Rasmussen JP, Cesta MF et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nano 4:747–751

    Article  Google Scholar 

  13. Tabet L, Bussy C et al (2009) Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J Toxicol Environ Health A 72(2):60–73

    Article  Google Scholar 

  14. Johnston HJ, Hutchison GR et al (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–246

    Article  Google Scholar 

  15. Shvedova AA, Kisin ER et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708

    Article  Google Scholar 

  16. Kayat J, Gajbhiye V et al (2011) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 7:40-49

    Article  Google Scholar 

  17. Muller J, Huaux F et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231

    Article  Google Scholar 

  18. Sakamoto Y, Nakae D et al (2009) Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34(1):65–76

    Article  Google Scholar 

  19. Takagi A, Hirose A et al (2008) Induction of mesothelioma in p53 +/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33(1):105–116

    Article  Google Scholar 

  20. Mercer RR, Hubbs AF et al (2011) Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 7:28

    Article  Google Scholar 

  21. Shvedova AA, Kisin ER et al (2007) Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol 221(3):339–348

    Article  Google Scholar 

  22. Shvedova AA, Kisin ER et al (2004) Pro/antioxidant status in murine skin following topical exposure to cumene hydroperoxide throughout the ontogeny of skin cancer. Biochemistry (Mosc) 69(1):23–31

    Article  Google Scholar 

  23. Mitchell LA, Gao J et al (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100(1):203–214

    Article  Google Scholar 

  24. Erdely A, Hulderman T et al (2008) Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett 9(1):36–43

    Article  Google Scholar 

  25. Park E-J, Cho W-S et al (2009) Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259:113–121

    Article  Google Scholar 

  26. Inoue K, Koike E et al (2009) Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol 237(3):306–316

    Article  Google Scholar 

  27. Cesta MF, Ryman-Rasmussen JP et al (2010) Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43(2):142–151

    Article  Google Scholar 

  28. Shvedova AA, Fabisiak JP et al (2008) Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38(5):579–590

    Article  Google Scholar 

  29. Kolosnjaj-Tabi J, Hartman KB et al (2010) In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 4(3):1481–1492

    Article  Google Scholar 

  30. Muller J, Huaux F et al (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21(9):1698–1705

    Article  Google Scholar 

  31. Poland CA, Duffin R et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  Google Scholar 

  32. Fenoglio I, Greco G et al (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol 21(9):1690–1697

    Article  Google Scholar 

  33. Wako K, Kotani Y et al (2010) Effects of preparation methods for multi-wall carbon nanotube (MWCNT) suspensions on MWCNT induced rat pulmonary toxicity. J Toxicol Sci 35(4):437–446

    Article  Google Scholar 

  34. Li JG, Li WX et al (2007) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22(4):415–421

    Article  MATH  Google Scholar 

  35. Guo L, Morris D et al (2007) Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater 19:3472–3478

    Article  Google Scholar 

  36. Liu X, Guo L et al (2008) Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon N Y 46(3):489–500

    Article  Google Scholar 

  37. Porter AE, Gass M et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2(11):713–717

    Article  Google Scholar 

  38. Bussy C, Cambedouzou J et al (2008) Carbon nanotubes in macrophages: imaging and chemical analysis by X-ray fluorescence microscopy. Nano Lett 8:2659–2663

    Article  Google Scholar 

  39. Allen BL, Kichambare PD et al (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8(11):3899–3903

    Article  Google Scholar 

  40. Kagan VE, Konduru NV et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nano 5(5):354–359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Lanone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Lanone, S. (2013). Respiratory Toxicity of Carbon Nanotubes. In: Brayner, R., Fiévet, F., Coradin, T. (eds) Nanomaterials: A Danger or a Promise?. Springer, London. https://doi.org/10.1007/978-1-4471-4213-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4213-3_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4212-6

  • Online ISBN: 978-1-4471-4213-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics