Skip to main content

Hydride Phases, Orientation Relationships, Habit Planes, and Morphologies

  • Chapter
  • First Online:
The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1465 Accesses

Abstract

This chapter deals with the morphology, habits, and orientation relationships of single, or groups of, γ- and δ-hydride precipitates in zirconium and its alloys in stressed and unstressed material. It is shown that individual hydride precipitates have acicular or plate-like shapes, forming offset arrays of precipitates driven through an autocatalytic nucleation process by the hydrides’ transformation strains. In Zr-2.5Nb pressure tube alloys their habit planes are always the near-basal α-zirconium planes regardless of the orientation of the hydride cluster array as it appears in optical micrographs. From analyses of the hydride’s habit plane and its shape and cluster configuration it is concluded that in Zr-2.5Nb pressure tube material hydride formation is via an invariant plane strain transformation in which almost all of the volumetric transformation strain is oriented in the direction normal to the invariant plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Weatherly [46] gives the third diagonal term as 1.0320, which seems to be in error from the dot product of S 2·S 1.

  2. 2.

    The reference for the lattice parameters of γ-hydride given in Carpenter’s paper [11] is incorrectly attributed to Bradbrook et al. [6] (the typographical error in this reference is corrected here). The latter authors actually quote the lattice parameter values for γ-hydride determined by Sidhu et al. [43]. Weatherly [46] also uses Sidhu et al’s lattice parameter values in his transformation strain calculations, citing an open literature version of this source [43].

  3. 3.

    Note the observation of hydrides in the β phase shown in Fig. 3.24. The significance of this is brought out in Chap. 6, dealing with the thermodynamic relationships for the Zr–H solvus.

  4. 4.

    A more detailed study in a heat-treated Zr-2.5Nb alloy of the interface formed between the retained β-Zr(bcc) and the surrounding α-Zr matrix phases has been described in a number of papers [36, 49, 50].

References

  1. Ashby, M.F., Johnson, L.: On the generation of dislocations at misfitting particles in a ductile matrix. Philos. Mag. 20, 1009–1022 (1969)

    Article  Google Scholar 

  2. Akhtar, A.: The nature of γ-hydride in crept zirconium single crystals. J. Nucl. Mater. 64, 86–92 (1977)

    Article  Google Scholar 

  3. Bailey, J.E.: Electron microscope observations on the precipitation of zirconium hydride in zirconium. Acta Metall. 11, 267–280 (1963)

    Article  Google Scholar 

  4. Banerjee, D., Arunachalam, V.S.: On the α/β interface phase in Ti alloys. Acta Metall. 29, 1685–1694 (1981)

    Article  Google Scholar 

  5. Bowles, J.S., Muddle, B.C., Wayman, C.M.: The crystallography of the precipitation of β vanadium hydride. Acta Metall. 25, 513–520 (1977)

    Article  Google Scholar 

  6. Bradbrook, J.S., Lorimer, G.W., Ridley, N.: The precipitation of zirconium hydride in zirconium and Zircaloy-2. J. Nucl. Mater. 42, 142–162 (1972)

    Article  Google Scholar 

  7. Brown, L.M., Clark, D.R.: The work hardening of fibrous composites with particular reference to the copper-tungsten system. Acta Metall. 25, 563–570 (1977)

    Article  Google Scholar 

  8. Cassidy, M.P., Muddle, B.C., Scott, T.E., et al.: Experimental studies of the crystallography of the precipitation of β vanadium hydride. Acta Metall. 25, 829–838 (1977)

    Article  Google Scholar 

  9. Cassidy, M.P., Wayman, C.M.: The crystallography of hydride formation in zirconium: I. The δ → γ transformation. Metall. Trans. A 11, 47–56 (1980)

    Google Scholar 

  10. Cassidy, M.P., Wayman, C.M.: The crystallography of hydride formation in zirconium: II. The δ → ε transformation. Metall. Trans. A 11, 57–67 (1980)

    Article  Google Scholar 

  11. Carpenter, G.J.C.: The dilatational misfit of zirconium hydrides precipitated in zirconium. J. Nucl. Mater. 48, 264–266 (1973)

    Article  Google Scholar 

  12. Carpenter, G.J.C., Watters, J.F., Gilbert, R.W.: Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys. J. Nucl. Mater. 48, 267–276 (1973)

    Article  Google Scholar 

  13. Carpenter, G.J.C.: The precipitation of γ-zirconium hydride in zirconium. Acta Metall. 26, 1225–1235 (1978)

    Article  Google Scholar 

  14. Christian, J.W.: A theory of the transformation in pure cobalt. Proc. R. Soc. London A 206, 51–64 (1951)

    Article  Google Scholar 

  15. Cottrell, A.H., Bilby, B.A.: A mechanism for the growth of deformation twins in crystals. Philos. Mag. 42, 573–581 (1951)

    MATH  Google Scholar 

  16. Ells, C.E.: Hydride precipitates in zirconium alloys. J. Nucl. Mater. 28, 129–151 (1968)

    Article  Google Scholar 

  17. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eshelby, J.D.: Continuum theory of lattice defects. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics 3, pp. 79–140. Academic Press, New York (1966)

    Google Scholar 

  19. Eshelby, J.D.: Elastic inclusions and inhomogeneities. Prog. Sol. Mech. 2, 89–140 (1961)

    Google Scholar 

  20. Kelly, A., Groves, G.W.: In Crystallography and Crystal Defects. Longman, London, UK (1970)

    Google Scholar 

  21. Hall, I.W.: Basal and near–basal hydrides in Ti-5Al-2.5Sn. Metall. Trans. A 9A, 815–820 (1978)

    Google Scholar 

  22. Heheman, I.F.: Transformations in zirconium-niobium alloys. Can. Metall. Q. 11, 201–211 (1972)

    Article  Google Scholar 

  23. Hirth, J.P., Lothe, J.: Theory of Dislocations, p. 336. McGraw-Hill, New York (1968)

    Google Scholar 

  24. Lichter, B.D.: Trans. AIME 218, 1015 (1960)

    Google Scholar 

  25. MacEwen, S.R., Faber Jr, J., Turner, A.P.L.: The use of time-of-flight neutron diffraction to study grain interaction stresses. Acta Metall. 31, 657–676 (1983)

    Article  Google Scholar 

  26. MacEwen, S.R., Faber Jr, J., Turner, A.P.L.: The influence of texture on the interpretation of diffraction data to determine residual stress. Scripta Metall. 18, 629–633 (1984)

    Article  Google Scholar 

  27. MacEwen, S.R., Tome, C., Faber Jr, J.: Residual stresses in annealed Zircaloy. Acta Metall. 37, 979–989 (1989)

    Article  Google Scholar 

  28. Northwood, D.O., Gilbert, R.W.: Hydrides in zirconium-2.5 wt% niobium alloy pressure tubing. J. Nucl. Mater. 78, 112–116 (1978)

    Article  Google Scholar 

  29. Paton, N.E., Spurling, R.A.: Hydride habit planes in titanium-aluminum alloys. Metall. Trans. A 7A, 1769–1774 (1976)

    Google Scholar 

  30. Perovic, V., Purdy, G.R., Brown, L.M.: On the stability of arrays of precipitates. Acta Metall. 27, 1075–1084 (1979)

    Article  Google Scholar 

  31. Perovic, V., Purdy, G.R., Brown, L.M.: Autocatalytic nucleation and elastic stabilization of linear arrays of plate-shaped precipitates. Acta Metall. 29, 889–902 (1981)

    Article  Google Scholar 

  32. Perovic, V., Purdy, G.R., Brown, L.M.: The role of shear transformation strains in the formation of linear arrays of precipitates. Scripta Metall. 15, 217–221 (1981)

    Article  Google Scholar 

  33. Perovic, V., Weatherly, G.C., Simpson, C.J.: The role of elastic strains in the formation of stacks of hydride precipitates in zirconium alloys. Scripta Metall. 16, 409–412 (1982)

    Article  Google Scholar 

  34. Perovic, V., Weatherly, G.C., Simpson, C.J.: Hydride precipitation in α/β zirconium alloys. Acta Metall. 31, 1381–1391 (1983)

    Article  Google Scholar 

  35. Perovic, V., Weatherly, G.C.: The nucleation of hydrides in Zr-2.5 wt% Nb Alloy. J. Nucl. Mater. 126, 160–169 (1984)

    Article  Google Scholar 

  36. Perovic, V., Weatherly, G.C.: The β to α transformation in a Zr-2.5 wt% Nb alloy. Acta Metall. 37, 813–821 (1989)

    Article  Google Scholar 

  37. Perovic, V., Weatherly, G.C., MacEwen, S.R., et al.: The influence of prior deformation on hydride precipitation in Zircaloy. Acta Metall. Mater. 40, 363–372 (1992)

    Article  Google Scholar 

  38. Pegoud, J., Guillaumin, J.: Orientations crystallographiques de l’hydrure dans le Zircaloy-2 polycristallin. J. Nucl. Mater. 45, 64–72 (1972/1973)

    Google Scholar 

  39. Puls, M.P.: The influence of hydride size and matrix strength on fracture initiation at hydrides in zirconium alloys. Metall. Trans. A 19A, 1507–1522 (1988)

    Google Scholar 

  40. Puls, M.P.: Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 393, 350–367 (2009)

    Article  Google Scholar 

  41. Roy, C.: Hydrogen distribution in oxidized zirconium alloys by autoradiography. Atomic Energy of Canada Ltd (AECL) Report No. 2085, Chalk River Laboratories, Chalk River, Ontario, Canada (1964)

    Google Scholar 

  42. Roy, C., Jacques, J.G.: \( \{1\;0\;\overline{1}\;7\} \) hydride habit planes in single crystal zirconium. J. Nucl. Mater. 31, 233–237 (1969)

    Google Scholar 

  43. Sidhu, S.S., Murthy, N.S.S., Campos, F.P., et al.: Neutron and X-ray diffraction studies of nonstoichiometric metal hydrides. Adv. Chem. Ser. 39, 87–98 (1963)

    Article  Google Scholar 

  44. Sleeswyk, A.W.: Emissary dislocations: theory and experiments on the propagation of deformation twins in α-iron. Acta Metall. 10, 705–725 (1962)

    Article  Google Scholar 

  45. Venables, J.A.: Deformation twinning in face-centred cubic metals. Philos. Mag. 6, 379–396 (1961)

    Article  Google Scholar 

  46. Weatherly, G.C.: The precipitation of γ-hydride plates in zirconium. Acta Metall. 29, 501–512 (1981)

    Article  Google Scholar 

  47. Westlake, D.G.: The habit planes of zirconium hydrides in zirconium and Zircaloy. J. Nucl. Mater. 26, 208–216 (1968)

    Article  Google Scholar 

  48. Westlake, D.G., Fisher, E.S.: Precipitation of zirconium hydride in alpha zirconium crystals. Trans. AIME 244, 254–258 (1962)

    Google Scholar 

  49. Zhang, W.-Z., Purdy, G.R.: A TEM study of the crystallography and interphase boundary structure of precipitates in a Zr-2.5 wt% Nb alloy. Acta Metall. Mater. 41, 543–551 (1993)

    Article  Google Scholar 

  50. Zhang, W.Z., Perovic, V., Perovic, A., et al.: The structure of hcp–bcc interfaces in a Zr-Nb alloy. Acta Mater 46, 3443–3453 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred P Puls .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Puls, M.P. (2012). Hydride Phases, Orientation Relationships, Habit Planes, and Morphologies. In: The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Engineering Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4195-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4195-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4194-5

  • Online ISBN: 978-1-4471-4195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics