Skip to main content

Growing Organs for Transplantation from Embryonic Precursor Tissues

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation

Abstract

The use of pig fetal precursor tissues can answer the shortage of organs for transplantation. Our data pinpoint a window of time in pig fetal kidney, pancreas, liver, spleen, and lung organogenesis that may be optimal for transplantation into mature recipients. “Window” transplants are defined by their remarkable ability to grow, differentiate, and undergo vascularization, achieving successful organogenesis of a functional organ. The transplanted tissue shows no evidence of transdifferentiation or tumorigenicity and displays reduced immunogenicity compared to its adult counterparts.

Interestingly, this “window” might vary between different tissues. Perhaps the most advanced candidate for clinical translation is the pig embryonic pancreatic application shown recently to be capable of complete reversal of diabetes in nonhuman primates. This later achievement was largely based on studies in immune deficient mice, in which E42 pig pancreatic tissue has been identified as the tissue of choice, based on its long-term growth potential, functionality, response to glucose challenge, endocrine/exocrine ratio, vasculature pattern, and reduced immunogenicity compared to adult tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammerman MR. Windows of opportunity for organogenesis. Transpl Immunol. 2005;15:1–8.

    Article  PubMed  CAS  Google Scholar 

  2. Dekel B, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9:53–60.

    Article  PubMed  CAS  Google Scholar 

  3. Dekel B, et al. Engraftment of human kidney tissue in rat radiation chimera: I. A new model of human kidney allograft rejection. Transplantation. 1997;64:1541–50.

    Article  PubMed  CAS  Google Scholar 

  4. Foglia RP, DiPreta J, Statter MB, Donahoe PK. Fetal allograft survival in immunocompetent recipients is age dependent and organ specific. Ann Surg. 1986;204:402–10.

    Article  PubMed  CAS  Google Scholar 

  5. Metzger R, Parasta A, Joppich I, Till H. Organ-specific maturation of the major histocompatibility antigens in rats. Pediatr Surg Int. 2002;18:640–7.

    Article  PubMed  Google Scholar 

  6. Statter MB, Foglia RP, Parks DE, Donahoe PK. Fetal and postnatal testis shows immunoprivilege as donor tissue. J Urol. 1988;139:204–10.

    PubMed  CAS  Google Scholar 

  7. Aronovich A, et al. Correction of hemophilia as a proof of concept for treatment of monogenic diseases by fetal spleen transplantation. Proc Natl Acad Sci USA. 2006;103:19075–80.

    Article  PubMed  CAS  Google Scholar 

  8. Eventov-Friedman S, et al. Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Med. 2006;3:e215.

    Article  PubMed  Google Scholar 

  9. Mandel TE. Fetal islet xenotransplantation in rodents and primates. J Mol Med (Berl). 1999;77:155–60.

    Article  CAS  Google Scholar 

  10. Mandel TE. Fetal islet transplantation. Transplant Proc. 1992;24:1996–7.

    PubMed  CAS  Google Scholar 

  11. Korsgren O, Jansson L, Eizirik D, Andersson A. Functional and morphological differentiation of fetal porcine islet-like cell clusters after transplantation into nude mice. Diabetologia. 1991;34:379–86.

    Article  PubMed  CAS  Google Scholar 

  12. Clancy MJ, et al. Immunosuppression is essential for successful allogeneic transplantation of the metanephros. Transplantation. 2009;88:151.

    Article  PubMed  CAS  Google Scholar 

  13. Eventov-Friedman S, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci USA. 2005;102:2928–33.

    Article  PubMed  CAS  Google Scholar 

  14. Katchman H, et al. Embryonic porcine liver as a source for transplantation: advantage of intact liver implants over isolated hepatoblasts in overcoming homeostatic inhibition by the quiescent host liver. Stem Cells. 2008;26:1347–55.

    Article  PubMed  CAS  Google Scholar 

  15. Sollinger H, et al. Experience with 500 simultaneous pancreas-kidney transplants. Ann Surg. 1998;228:284.

    Article  PubMed  CAS  Google Scholar 

  16. Ryan EA, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54:2060–9.

    Article  PubMed  CAS  Google Scholar 

  17. Robertson RP. Islet transplantation as a treatment for diabetes – a work in progress. N Engl J Med. 2004; 350:694.

    Article  PubMed  CAS  Google Scholar 

  18. Bonner-Weir S, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000;97:7999–8004.

    Article  PubMed  CAS  Google Scholar 

  19. Attali M, et al. Control of β-cell differentiation by the pancreatic mesenchyme. Diabetes. 2007;56:1248–58.

    Article  PubMed  CAS  Google Scholar 

  20. Ye F, Duvillie B, Scharfmann R. Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia. 2005;48:277–81.

    Article  PubMed  CAS  Google Scholar 

  21. Groth C, Tibell A, Wennberg L, Korsgren O. Xenoislet transplantation: experimental and clinical aspects. J Mol Med. 1999;77:153–4.

    Article  PubMed  CAS  Google Scholar 

  22. Groth CG, et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet. 1994;344:1402–4.

    Article  PubMed  CAS  Google Scholar 

  23. Rogers SA, Chen F, Talcott M, Hammerman MR. Islet cell engraftment and control of diabetes in rats after transplantation of pig pancreatic anlagen. Am J Physiol. 2004;286:E502–9.

    CAS  Google Scholar 

  24. Rogers SA, Liapis H, Hammerman MR. Normalization of glucose post-transplantation of pig pancreatic anlagen into non-immunosuppressed diabetic rats depends on obtaining anlagen prior to embryonic day 35. Transpl Immunol. 2005;14:67–75.

    Article  PubMed  CAS  Google Scholar 

  25. Koulmanda M, Laufer TM, Auchincloss Jr H, Smith RN. Prolonged survival of fetal pig islet xenografts in mice lacking the capacity for an indirect response. Xenotransplantation. 2004;11:525–30.

    Article  PubMed  Google Scholar 

  26. Mirenda V, et al. Achieving permanent survival of islet xenografts by independent manipulation of direct and indirect T-cell responses. Diabetes. 2005;54:1048–55.

    Article  PubMed  CAS  Google Scholar 

  27. Tchorsh-Yutsis D, et al. Pig embryonic pancreatic ­tissue as a source for transplantation in diabetes: transient treatment with anti-LFA1, anti-CD48 and FTY720 enables long term graft maintenance in mice with only mild ongoing immunosuppression. Diabetes. 2009;58(7):1585–94.

    Article  PubMed  CAS  Google Scholar 

  28. Samstein B, Platt JL. Physiologic and immunologic hurdles to xenotransplantation. J Am Soc Nephrol. 2001;12:182.

    PubMed  CAS  Google Scholar 

  29. Candinas D, Adams D. Xenotransplantation: postponed by a millennium? QJM. 2000;93:63.

    Article  PubMed  CAS  Google Scholar 

  30. Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007;7:519–31.

    Article  PubMed  CAS  Google Scholar 

  31. Cascalho M, Platt J. The immunological barrier to xenotransplantation. Immunity. 2001;14:437–46.

    Article  PubMed  CAS  Google Scholar 

  32. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of a-galactosyl epitopes on nucleated cells. J Biol Chem. 1988;263(33):17755–62.

    PubMed  CAS  Google Scholar 

  33. Good A, et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc. 1992;24(2):559–62.

    PubMed  CAS  Google Scholar 

  34. Sandrin M, Vaughan H, Dabkowski P, McKenzie I. Anti-pig IgM antibodies in human serum react predominantly with Gal (alpha 1–3) Gal epitopes. Proc Natl Acad Sci. 1993;90:11391.

    Article  PubMed  CAS  Google Scholar 

  35. Sæthre M, Baumann BC, Fung M, Seebach JD, Mollnes TE. Characterization of natural human anti-non-gal antibodies and their effect on activation of porcine gal-deficient endothelial cells. Transplantation. 2007;84:244.

    Article  PubMed  Google Scholar 

  36. Chen G, et al. The role of anti-non-Gal antibodies in the development of acute humoral xenograft rejection of hDAF transgenic porcine kidneys in baboons receiving anti-Gal antibody neutralization therapy. Transplantation. 2006;81:273.

    Article  PubMed  CAS  Google Scholar 

  37. Chen G, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med. 2005;11:1295–8.

    Article  PubMed  CAS  Google Scholar 

  38. Cowan PJ, Roussel JC, Apice AJF. The vascular and coagulation issues in xenotransplantation. Curr Opin Organ Transplant. 2009;14:161.

    Article  PubMed  Google Scholar 

  39. Shimizu A, et al. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha 1, 3-galactosyltransferase Gene-Knockout pigs in baboons. Am J Pathol. 2008;172:1471.

    Article  PubMed  CAS  Google Scholar 

  40. Vajkoczy P, et al. Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin. Am J Pathol. 1995;146:1397.

    PubMed  CAS  Google Scholar 

  41. Hecht G, et al. Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proc Natl Acad Sci USA. 2009;106(21):8401–2.

    Article  Google Scholar 

Download references

Acknowledgments

Y.R. holds the Henry H. Drake Professorial Chair in Immunology and he is the head of the Gabriella Rich Center for Transplantation Biology Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Reisner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Yutzis-Tchorsh, D., Reisner, Y. (2013). Growing Organs for Transplantation from Embryonic Precursor Tissues. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_31

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics