Skip to main content

Electronic Structure of Nanoalloys: A Guide of Useful Concepts and Tools

  • Chapter
  • First Online:
Nanoalloys

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1423 Accesses

Abstract

The aim of this lecture is to give an overlook about methods developed in infinite (bulk) and semi-infinite (surface) metallic materials and some tracks to extend them to finite size systems. In this framework we will first study the effect of bond breaking and dimension lowering on electronic structure, at surfaces of pure metals (surface states, atomic level shifts, reconstructions and relaxations) and in monometallic clusters. Then we will illustrate the influence of chemical ordering on electronic structure (and vice versa) by considering firstly bulk alloys (diagonal versus off-diagonal disorder) and then bimetallic surfaces (stress effect induced by either surface segregation or epitaxial growth). These two approaches will then naturally be combined in the peculiar case of nanoalloys. The methods will be developed following two main goals. The first one is to determine local electronic densities of states (LDOS), the knowledge of which is essential to the understanding and the analysis of nano-objects. The second one is to derive from these LDOS energetic models well suited to both the degree of complexity of the systems under study (bulk and surface crystalline structure, chemical ordering, …) and their implementation in numerical simulations (Molecular Dynamics, Monte Carlo). The different sections of the lecture will be illustrated by examples issued from studies performed on systems which can be considered as archetypal in the nano-alloy community, such as CoPt, CoAu and CuAg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohn, W., Becke, A.D., Parr, R.G.: Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980 (1996) (and references therein)

    Google Scholar 

  2. Ashcroft, N.W.: The Fermi surface of aluminium. Philos. Mag. 8, 2055–2083 (1963)

    Article  Google Scholar 

  3. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1992)

    Article  Google Scholar 

  4. Friedel, J.: Physics of Metals, vol. 1, Cambridge University Press, Cambridge (1978)

    Google Scholar 

  5. Ducastelle, F.: Structure électronique des métaux de transition et de leurs alliages. Thèse Orsay (1972)

    Google Scholar 

  6. Lambin, P., Gaspard, J.P.: Continued-fraction technique for tight-binding systems: a generalized-moments method. Phys. Rev. B 26, 4356–4368 (1982)

    Article  Google Scholar 

  7. Haydock, R., Heine, V., Kelly, M.J.: Electronic structure based on local atomic environment for tight-binding bands. J. Phys. C 5, 2845–2858 (1972); C 8, 2591–2605 (1975)

    Google Scholar 

  8. Turchi, P., Ducastelle, F., Tréglia, G.: Band gaps and asymptotic behaviour of continued fraction coefficients. J. Phys. C 15, 2891–2924 (1982)

    Article  Google Scholar 

  9. Jaafar, A., Goyhenex, C., Tréglia, G.: Role of sp-d hybridization in the formation of stacking defects at metal surfaces. Surf. Sci. 602, 2681–2688 (2008)

    Article  Google Scholar 

  10. Ducastelle, F.: Order and Phase Stability in Alloys. North-Holland, Amsterdam (1991)

    Google Scholar 

  11. Turchi, P.: Structure électronique et stabilité des alliages de métaux de transition: effets de structure cristalline et d’ordre configurationnel. Thèse Paris (1984)

    Google Scholar 

  12. Desjonquères, M.C., Spanjaard D.: Concepts in Surface Physics. Springer, Berlin (1995)

    Google Scholar 

  13. Spanjaard, D., Guillot, C., Desjonquères, M.C., Tréglia, G., Lecante, J.: Surface core level spectroscopy of transition metals: a new tool for the determination of their surface structure. Surf. Sci. Rep. 5, 1–85 (1985)

    Article  Google Scholar 

  14. Sawaya, S., Goniakowski, J., Mottet, C., Saúl, A., Tréglia, G.: Charge redistribution at Pd surfaces: ab initio grounds for tight-binding interatomic potentials. Phys. Rev. B 56, 12161–12166 (1997)

    Article  Google Scholar 

  15. Jaafar, A., Goyhenex, C., Tréglia, G.: Rules for tight-binding calculations in bimetallic compounds based on density functional theory: the case of CoAu. J. Phys. Condens. Matter. 22, 505503 (2010)

    Article  Google Scholar 

  16. Rosato, V., Guillopé, M., Legrand, B.: Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model. Philos. Mag. A 59, 321–336 (1989)

    Article  Google Scholar 

  17. Spanjaard, D., Desjonquères, M.C.: Universal features of bonding in metals. Phys. Rev. B 30, 4822–4827 (1984)

    Article  Google Scholar 

  18. Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys. Phys. Rev. B 33, 7983–7991 (1986)

    Article  Google Scholar 

  19. Garofalo, M., Tosatti, E., Ercolessi, F.: Structure, energetics, and low temperature behaviour of the Au(110) reconstructed surface. Surf. Sci. 188, 321–326 (1987)

    Article  Google Scholar 

  20. Guillopé, M., Legrand, B.: (110) surface stability in noble metals. Surf. Sci. 215, 577–595 (1989)

    Article  Google Scholar 

  21. Legrand, B., Tréglia, G., Desjonquères, M.C., Spanjaard, D.: A “quenched molecular dynamics” approach to the atomic stability of the (100) face of bcc transition metals. J. Phys. C 19, 4463–4472 (1986)

    Article  Google Scholar 

  22. Mottet,C.: Étude par simulation numérique d’agrégats libres mono- et bi-métalliques. Thèse, Université Aix-Marseille II (1997)

    Google Scholar 

  23. Mottet, C., Tréglia, G., Legrand, B.: Electronic structure of Pd clusters in the tight-binding approximation: influence of spd-hybridization. Surf. Sci. 352–354, 675–679 (1996)

    Article  Google Scholar 

  24. Hammer, B., Morikawa, Y., Norskov, J.K.: CO Chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996)

    Article  Google Scholar 

  25. Mottet, C., Tréglia, G., Legrand, B.: New magic numbers in metallic clusters: an unexpected metal dependence. Surf. Sci. 383, L719–L727 (1997)

    Article  Google Scholar 

  26. Wang, L.L., Johnson, D.D.: Density functional study of structural trends for late-transition-metal 13-atom clusters. Phys. Rev. B 75, 235405 (2007)

    Article  Google Scholar 

  27. Papaconstantopoulos, D.A.: Handbook of Electronic Structure of Elemental Solids. Plenum, New York (1986)

    Google Scholar 

  28. Velicky, B., Kirkpatrick, S., Ehrenreich, H.: Single-site approximations in the electronic theory of simple binary alloys. Phys. Rev. B 175, 747–766 (1968)

    Article  Google Scholar 

  29. Bieber, A., Ducastelle, F., Gautier, F., Tréglia, G., Turchi, P.: Electronic structure and relative stabilities of L12 and DO22 ordered structures occurring in transition metal alloys. Solid State Comm. 45, 585–590 (1983)

    Article  Google Scholar 

  30. Kudrnovsky, J., Bose, S.K., Andersen, O.K.: Comparative study of the electronic structure of ordered, partially ordered and disordered phases of the Cu3Au alloy. Phys. Rev. B 43, 4613–4621 (1991)

    Article  Google Scholar 

  31. Olovsson, W., Göransson, C., Pourovski, L.V., Johansson, B., Abrikosov, I.A.: Core-level shifts in fcc random alloys: a first-principles approach. Phys. Rev. B 72, 064203 (2005)

    Article  Google Scholar 

  32. Goyhenex, C., Tréglia, G.: Unified picture of d band and core level shifts in transition metal alloys. Phys. Rev. B 83, 075101 (2011)

    Article  Google Scholar 

  33. Tréglia, G., Ducastelle, F., Gautier, F.: Generalised perturbation theory in disordered transition metal alloys: application to the self-consistent calculation of ordering energies. J. Phys. F 8, 1437–1456 (1978)

    Article  Google Scholar 

  34. Lee, Y.-S., Lim, K.-Y., Chung, Y.-D., Wang, C.-N., Jeon, Y.: XPS core-level shifts and XANES studies of Cu-Pt and Co-Pt alloys. Surf. Interface Anal. 30, 475–478 (2000)

    Article  Google Scholar 

  35. Bieber, A., Gautier, F., Tréglia, G., Ducastelle, F.: Electronic structure, pairwise interactions and ordering energies in binary fcc transition metal alloys. Solid State Comm. 39, 149–153 (1981)

    Article  Google Scholar 

  36. Los, J., Mottet, C., Tréglia, G., Goyhenex, C.: Ordering trends in transition metal alloys from tight-binding electronic structure calculations. Phys. Rev. B 84, 180202(R) (2011)

    Google Scholar 

  37. Meunier, I., Tréglia, G., Legrand, B.: Surface-induced ordering in phase separation systems: Influence of concentration and orientation. Surf. Sci. 441, 225–239 (1999)

    Article  Google Scholar 

  38. Tréglia, G., Legrand, B., Ducastelle, F.: Segregation and ordering at surfaces of transition metal alloys: the tight-binding ising model. Europhys. Lett. 7, 575–580 (1988)

    Article  Google Scholar 

  39. Tréglia, G., Legrand, B.: Surface-sandwich segregation in PtNi and AgNi alloys: two different physical origins for the same phenomenon. Phys. Rev. B 35, 4338–4344 (1987)

    Article  Google Scholar 

  40. Creuze, J., Braems, I., Berthier, F., Mottet, C., Tréglia, G., Legrand, B.: Model of surface segregation driving forces and their coupling. Phys. Rev. B 78, 075413 (2008)

    Article  Google Scholar 

  41. Tréglia, G., Legrand, B., Ducastelle, F., Saúl, A., Gallis, C., Meunier, I., Mottet, C., Senhaji, A.: Alloy surfaces: Segregation, reconstruction and phase transitions. Comput. Mat. Sci. 15, 196–235 (1999)

    Article  Google Scholar 

  42. Goyhenex, C.: Revised tight-binding second moment potential for transition metal surfaces. Surf. Sci. 606(3–4), 325–328 (2012)

    Google Scholar 

  43. Mottet, C., Tréglia, G., Legrand, B.: Theoretical investigation of chemical and morphological ordering in PdcCu1−c clusters. Phys. Rev. B 66, 045413 (2002)

    Article  Google Scholar 

  44. Moreno, V., Creuze, J., Berthier, F., Mottet, C., Tréglia, G., Legrand, B.: Site segregation in size-mismatched nanoalloys: application to Cu–Ag. Surf. Sci. 600, 5011–5020 (2006)

    Article  Google Scholar 

  45. Amara, H., Bichara, C., Ducastelle, F.: Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition. Phys. Rev. Lett. 100, 056105 (2008)

    Article  Google Scholar 

  46. Los, J.H., Pellenq, J.M.: Determination of the bulk melting temperature of nickel using Monte Carlo simulations: inaccuracy of extrapolation from cluster melting temperatures. Phys. Rev. B 81, 064112 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Tréglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Tréglia, G., Goyhenex, C., Mottet, C., Legrand, C., Ducastelle, F. (2012). Electronic Structure of Nanoalloys: A Guide of Useful Concepts and Tools. In: Alloyeau, D., Mottet, C., Ricolleau, C. (eds) Nanoalloys. Engineering Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4014-6_5

Download citation

Publish with us

Policies and ethics