Skip to main content

Echocardiographic Evaluation of Coronary Artery Disease

  • Chapter
  • First Online:
Coronary Artery Disease

Part of the book series: Cardiovascular Medicine ((CVM))

Abstract

Echocardiographic evaluation of patients with coronary artery disease (CAD) is a low cost, portable, and non-invasive imaging tool that is available in almost all hospitals and in many office settings. Detection of a discreet impairment in regional left ventricular mechanical function by echocardiography provides real time cardiac imaging useful in the evaluation and diagnosis of acute and chronic CAD. Echocardiography helps to establish the diagnosis, location, and extent of ischemia and it identifies mechanical complications of infarction and provides prognostic information for risk stratification. Stress echocardiography, by induction of regional wall motion abnormalities with treadmill or bicycle exercise or following dobutamine pharmacologic stress, is routinely used to demonstrate the presence of CAD, to risk stratify patients, and to assess myocardial viability prior to revascularization. Newer echocardiographic parameters, such as strain rate and perfusion, have improved the accuracy in CAD detection and are complementary adjuncts in stress echocardiography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatle L, Sutherland GR. Regional myocardial function–a new approach. Eur Heart J. 2000;21(16):1337–57.

    CAS  PubMed  Google Scholar 

  2. Gallagher KP, Kumada T, Koziol JA, et al. Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation. 1980;62(6):1266–74.

    CAS  PubMed  Google Scholar 

  3. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation. 1981;63(4):739–46.

    CAS  PubMed  Google Scholar 

  4. Ren JF, Kotler MN, Hakki AH, et al. Quantitation of regional left ventricular function by two-dimensional echocardiography in normals and patients with coronary artery disease. Am Heart J. 1985;110(3):552–60.

    CAS  PubMed  Google Scholar 

  5. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67.

    CAS  PubMed  Google Scholar 

  6. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.

    PubMed  Google Scholar 

  7. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.

    PubMed  Google Scholar 

  8. Armstrong WF, Zoghbi WA. Stress echocardiography: current methodology and clinical applications. J Am Coll Cardiol. 2005;45(11):1739–47.

    PubMed  Google Scholar 

  9. Otto CM. Textbook of clinical echocardiography. 3rd ed. Philadelphia: W.B. Saunders Company; 2004.

    Google Scholar 

  10. Senior R, Becher H, Monaghan M, et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr. 2009;10(2):194–212.

    PubMed  Google Scholar 

  11. Kuhl HP, Schreckenberg M, Rulands D, et al. High-resolution transthoracic real-time three-dimensional echocardiography: quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2004;43(11):2083–90.

    PubMed  Google Scholar 

  12. Kvitting JP, Wigstrom L, Strotmann JM, Sutherland GR. How accurate is visual assessment of synchronicity in myocardial motion? An In vitro study with computer-simulated regional delay in myocardial motion: clinical implications for rest and stress echocardiography studies. J Am Soc Echocardiogr. 1999;12(9):698–705.

    CAS  PubMed  Google Scholar 

  13. Garcia MJ, Rodriguez L, Ares M, et al. Myocardial wall velocity assessment by pulsed Doppler tissue imaging: characteristic findings in normal subjects. Am Heart J. 1996;132(3):648–56.

    CAS  PubMed  Google Scholar 

  14. Wilkenshoff UM, Sovany A, Wigstrom L, et al. Regional mean systolic myocardial velocity estimation by real-time color Doppler myocardial imaging: a new technique for quantifying regional systolic function. J Am Soc Echocardiogr. 1998;11(7):683–92.

    CAS  PubMed  Google Scholar 

  15. D’Hooge J, Heimdal A, Jamal F, et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr. 2000;1(3):154–70.

    PubMed  Google Scholar 

  16. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000;102(10):1158–64.

    CAS  PubMed  Google Scholar 

  17. Jamal F, Kukulski T, Sutherland GR, et al. Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction? An ultrasonic strain rate and strain study. J Am Soc Echocardiogr. 2002;15(7):723–30.

    PubMed  Google Scholar 

  18. Voigt JU, Exner B, Schmiedehausen K, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107(16):2120–6.

    PubMed  Google Scholar 

  19. Gorcsan 3rd J. Echocardiographic strain imaging for myocardial viability: an improvement over visual assessment? Circulation. 2005;112(25):3820–2.

    PubMed  Google Scholar 

  20. Voigt JU, Arnold MF, Karlsson M, et al. Assessment of regional longitudinal myocardial strain rate derived from doppler myocardial imaging indexes in normal and infarcted myocardium. J Am Soc Echocardiogr. 2000;13(6):588–98.

    CAS  PubMed  Google Scholar 

  21. Leung DY, Ng AC. Emerging clinical role of strain imaging in echocardiography. Heart Lung Circ. 2010;19(3):161–74.

    PubMed  Google Scholar 

  22. Tei C, Ling LH, Hodge DO, et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J Cardiol. 1995;26(6):357–66.

    CAS  PubMed  Google Scholar 

  23. Broberg CS, Pantely GA, Barber BJ, et al. Validation of the myocardial performance index by echocardiography in mice: a noninvasive measure of left ventricular function. J Am Soc Echocardiogr. 2003;16(8):814–23.

    PubMed  Google Scholar 

  24. Duncan AM, O’Sullivan CA, Gibson DG, Henein MY. Electromechanical interrelations during dobutamine stress in normal subjects and patients with coronary artery disease: comparison of changes in activation and inotropic state. Heart. 2001;85(4):411–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Norager B, Husic M, Moller JE, Egstrup K. The myocardial performance index during low-dose dobutamine echocardiography in control subjects and patients with a recent myocardial infarction: a new index of left ventricular functional reserve? J Am Soc Echocardiogr. 2004;17(7):732–8.

    PubMed  Google Scholar 

  26. Norager B, Husic M, Moller JE, et al. The Doppler myocardial performance index during low-dose dobutamine echocardiography predicts mortality and left ventricular dilation after a first acute myocardial infarction. Am Heart J. 2005;150(3):522–9.

    PubMed  Google Scholar 

  27. Anavekar NS, Mirza A, Skali H, et al. Risk assessment in patients with depressed left ventricular function after myocardial infarction using the myocardial performance index–Survival and Ventricular Enlargement (SAVE) experience. J Am Soc Echocardiogr. 2006;19(1):28–33.

    PubMed  Google Scholar 

  28. Ross Jr J. Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation. 1991;83(3):1076–83.

    PubMed  Google Scholar 

  29. Hauser AM, Gangadharan V, Ramos RG, Gordon S, Timmis GC. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: echocardiographic observations during coronary angioplasty. J Am Coll Cardiol. 1985;5(2 Pt 1):193–7.

    CAS  PubMed  Google Scholar 

  30. Wohlgelernter D, Cleman M, Highman HA, et al. Regional myocardial dysfunction during coronary angioplasty: evaluation by two-dimensional echocardiography and 12 lead electrocardiography. J Am Coll Cardiol. 1986;7(6):1245–54.

    CAS  PubMed  Google Scholar 

  31. Jeroudi MO, Cheirif J, Habib G, Bolli R. Prolonged wall motion abnormalities after chest pain at rest in patients with unstable angina: a possible manifestation of myocardial stunning. Am Heart J. 1994;127(5):1241–50.

    CAS  PubMed  Google Scholar 

  32. Rinkevich D, Kaul S, Wang XQ, et al. Regional left ventricular perfusion and function in patients presenting to the emergency department with chest pain and no ST-segment elevation. Eur Heart J. 2005;26(16):1606–11.

    PubMed  Google Scholar 

  33. Sabia P, Afrookteh A, Touchstone DA, et al. Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction. A prospective study using two-dimensional echocardiography. Circulation. 1991;84(3 Suppl):I85–92.

    CAS  PubMed  Google Scholar 

  34. Yamaguchi S, Tsuiki K, Hayasaka M, Yasui S. Segmental wall motion abnormalities in dilated cardiomyopathy: hemodynamic characteristics and comparison with thallium-201 myocardial scintigraphy. Am Heart J. 1987;113(5):1123–8.

    CAS  PubMed  Google Scholar 

  35. Weston P, Alexander JH, Patel MR, et al. Hand-held echocardiographic examination of patients with symptoms of acute coronary syndromes in the emergency department: the 30-day outcome associated with normal left ventricular wall motion. Am Heart J. 2004;148(6):1096–101.

    PubMed  Google Scholar 

  36. Tong KL, Kaul S, Wang XQ, et al. Myocardial contrast echocardiography versus Thrombolysis In Myocardial Infarction score in patients presenting to the emergency department with chest pain and a nondiagnostic electrocardiogram. J Am Coll Cardiol. 2005;46(5):920–7.

    PubMed  Google Scholar 

  37. Cheitlin MD, Alpert JS, Armstrong WF, et al. ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation. 1997;95(6):1686–744.

    CAS  PubMed  Google Scholar 

  38. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003;108(9):1146–62.

    PubMed  Google Scholar 

  39. American College of Cardiology Foundation Appropriate Use Criteria Task Force; American Society of Echocardiography; American Heart Association, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians. J Am Coll Cardiol. 2011;57(9):1126–66.

    Google Scholar 

  40. Stamm RB, Gibson RS, Bishop HL, et al. Echocardiographic detection of infarct-localized asynergy and remote asynergy during acute myocardial infarction: correlation with the extent of angiographic coronary disease. Circulation. 1983;67(1):233–44.

    CAS  PubMed  Google Scholar 

  41. Heger JJ, Weyman AE, Wann LS, Dillon JC, Feigenbaum H. Cross-sectional echocardiography in acute myocardial infarction: detection and localization of regional left ventricular asynergy. Circulation. 1979;60(3):531–8.

    CAS  PubMed  Google Scholar 

  42. Heger JJ, Weyman AE, Wann LS, et al. Cross-sectional echocardiographic analysis of the extent of left ventricular asynergy in acute myocardial infarction. Circulation. 1980;61(6):1113–8.

    CAS  PubMed  Google Scholar 

  43. Pierard LA, Sprynger M, Carlier J. Echocardiographic prediction of the site of coronary artery obstruction in acute myocardial infarction. Eur Heart J. 1985;8:116.

    Google Scholar 

  44. Nixon JV, Brown CN, Smitherman TC. Identification of transient and persistent segmental: wall motion abnormalities in patients with unstable angina pectoris by two-dimensional echocardiography. Circulation. 1985;65:1497.

    Google Scholar 

  45. Arvan S, Varat MA. Two-dimensional echocardiography versus surface electrocardiography for the diagnosis of acute non-Q wave myocardial infarction. Am Heart J. 1985;110(1 Pt 1):44–9.

    CAS  PubMed  Google Scholar 

  46. Parisi AF, Moynihan PF, Folland ED, et al. Echocardiography in acute and remote myocardial infarction. Am J Cardiol. 1980;46(7):1205–14.

    CAS  PubMed  Google Scholar 

  47. Gibson RS, Bishop HL, Stamm RB, et al. Value of early two dimensional echocardiography in patients with acute myocardial infarction. Am J Cardiol. 1982;49(5):1110–9.

    CAS  PubMed  Google Scholar 

  48. Nixon JV, Brown CN, Smitherman TC. Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography. Circulation. 1982;65(7):1497–503.

    CAS  PubMed  Google Scholar 

  49. Pierard LA, Sprynger M, Carlier J. Echocardiographic prediction of the site of coronary artery obstruction in acute myocardial infarction. Eur Heart J. 1987;8(2):116–23.

    CAS  PubMed  Google Scholar 

  50. Sheehan FH, Doerr R, Schmidt WG, et al. Early recovery of left ventricular function after thrombolytic therapy for acute myocardial infarction: an important determinant of survival. J Am Coll Cardiol. 1988;12(2):289–300.

    CAS  PubMed  Google Scholar 

  51. Solomon SD, Glynn RJ, Greaves S, et al. Recovery of ventricular function after myocardial infarction in the reperfusion era: the healing and early afterload reducing therapy study. Ann Intern Med. 2001;134(6):451–8.

    CAS  PubMed  Google Scholar 

  52. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):529–55.

    PubMed  Google Scholar 

  53. Task Force on the management of S. T. segment elevation acute myocardial infarction of the European Society of Cardiology, Steg PG, James SK, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619.

    Google Scholar 

  54. Goldberg RJ, Samad NA, Yarzebski J, et al. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med. 1999;340(15):1162–8.

    CAS  PubMed  Google Scholar 

  55. Goldberger JJ, Himelman RB, Wolfe CL, Schiller NB. Right ventricular infarction: recognition and assessment of its hemodynamic significance by two-dimensional echocardiography. J Am Soc Echocardiogr. 1991;4(2):140–6.

    CAS  PubMed  Google Scholar 

  56. Holmes Jr DR, Bates ER, Kleiman NS, et al. Contemporary reperfusion therapy for cardiogenic shock: the GUSTO-I trial experience. The GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am Coll Cardiol. 1995;26(3):668–74.

    PubMed  Google Scholar 

  57. Holmes Jr DR, Berger PB, Hochman JS, et al. Cardiogenic shock in patients with acute ischemic syndromes with and without ST-segment elevation. Circulation. 1999;100(20):2067–73.

    PubMed  Google Scholar 

  58. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Circulation. 2004;110(5):588–636.

    PubMed  Google Scholar 

  59. Becker RC, Gore JM, Lambrew C, et al. A composite view of cardiac rupture in the United States National Registry of Myocardial Infarction. J Am Coll Cardiol. 1996;27(6):1321–6.

    CAS  PubMed  Google Scholar 

  60. Pohjola-Sintonen S, Muller JE, Stone PH, et al. Ventricular septal and free wall rupture complicating acute myocardial infarction: experience in the Multicenter Investigation of Limitation of Infarct Size. Am Heart J. 1989;117(4):809–18.

    CAS  PubMed  Google Scholar 

  61. Stevenson WG, Linssen GC, Havenith MG, Brugada P, Wellens HJ. The spectrum of death after myocardial infarction: a necropsy study. Am Heart J. 1989;118(6):1182–8.

    CAS  PubMed  Google Scholar 

  62. Figueras J, Cortadellas J, Calvo F, Soler-Soler J. Relevance of delayed hospital admission on development of cardiac rupture during acute myocardial infarction: study in 225 patients with free wall, septal or papillary muscle rupture. J Am Coll Cardiol. 1998;32(1):135–9.

    CAS  PubMed  Google Scholar 

  63. Becker RC, Hochman JS, Cannon CP, et al. Fatal cardiac rupture among patients treated with thrombolytic agents and adjunctive thrombin antagonists: observations from the Thrombolysis and Thrombin Inhibition in Myocardial Infarction 9 Study. J Am Coll Cardiol. 1999;33(2):479–87.

    PubMed  Google Scholar 

  64. Moreno R, Lopez-Sendon J, Garcia E, et al. Primary angioplasty reduces the risk of left ventricular free wall rupture compared with thrombolysis in patients with acute myocardial infarction. J Am Coll Cardiol. 2002;39(4):598–603.

    PubMed  Google Scholar 

  65. Becker RC, Charlesworth A, Wilcox RG, et al. Cardiac rupture associated with thrombolytic therapy: impact of time to treatment in the Late Assessment of Thrombolytic Efficacy (LATE) study. J Am Coll Cardiol. 1995;25(5):1063–8.

    CAS  PubMed  Google Scholar 

  66. Bueno H, Martinez-Selles M, Perez-David E, Lopez-Palop R. Effect of thrombolytic therapy on the risk of cardiac rupture and mortality in older patients with first acute myocardial infarction. Eur Heart J. 2005;26(17):1705–11.

    CAS  PubMed  Google Scholar 

  67. Cheriex EC, de Swart H, Dijkman LW, et al. Myocardial rupture after myocardial infarction is related to the perfusion status of the infarct-related coronary artery. Am Heart J. 1995;129(4):644–50.

    CAS  PubMed  Google Scholar 

  68. Gertz SD, Kragel AH, Kalan JM, Braunwald E, Roberts WC. Comparison of coronary and myocardial morphologic findings in patients with and without thrombolytic therapy during fatal first acute myocardial infarction. The TIMI Investigators. Am J Cardiol. 1990;66(12):904–9.

    CAS  PubMed  Google Scholar 

  69. Honan MB, Harrell Jr FE, Reimer KA, et al. Cardiac rupture, mortality and the timing of thrombolytic therapy: a meta-analysis. J Am Coll Cardiol. 1990;16(2):359–67.

    CAS  PubMed  Google Scholar 

  70. Morishima I, Sone T, Mokuno S, et al. Clinical significance of no-reflow phenomenon observed on angiography after successful treatment of acute myocardial infarction with percutaneous transluminal coronary angioplasty. Am Heart J. 1995;130(2):239–43.

    CAS  PubMed  Google Scholar 

  71. Nakatani D, Sato H, Kinjo K, et al. Effect of successful late reperfusion by primary coronary angioplasty on mechanical complications of acute myocardial infarction. Am J Cardiol. 2003;92(7):785–8.

    PubMed  Google Scholar 

  72. Lopez-Sendon J, Gonzalez A, Lopez de Sa E, et al. Diagnosis of subacute ventricular wall rupture after acute myocardial infarction: sensitivity and specificity of clinical, hemodynamic and echocardiographic criteria. J Am Coll Cardiol. 1992;19(6):1145–53.

    CAS  PubMed  Google Scholar 

  73. Woldow AB, Mattleman SJ, Ablaza SG, Nakhjavan FK. Isolated rupture of the right ventricle in a patient with acute inferior wall MI. Chest. 1990;98(2):484–5.

    CAS  PubMed  Google Scholar 

  74. Figueras J, Curos A, Cortadellas J, Soler-Soler J. Reliability of electromechanical dissociation in the diagnosis of left ventricular free wall rupture in acute myocardial infarction. Am Heart J. 1996;131(5):861–4.

    CAS  PubMed  Google Scholar 

  75. McMullan MH, Maples MD, Kilgore Jr TL, Hindman SH. Surgical experience with left ventricular free wall rupture. Ann Thorac Surg. 2001;71(6):1894–8; discussion 1898–99.

    CAS  PubMed  Google Scholar 

  76. Frances C, Romero A, Grady D. Left ventricular pseudoaneurysm. J Am Coll Cardiol. 1998;32(3):557–61.

    CAS  PubMed  Google Scholar 

  77. Pierli C, Lisi G, Mezzacapo B. Subacute left ventricular free wall rupture. Surgical repair prompted by echocardiographic diagnosis. Chest. 1991;100(4):1174–6.

    CAS  PubMed  Google Scholar 

  78. Crossley RA, Morgan-Hughes GJ, Roobottom CA. Post myocardial infarction left ventricular free wall rupture diagnosed by multidetector computed tomography. Heart. 2007;93(6):653.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Krishnan U, McCann GP, Hickey M, Schmitt M. Role of contrast-enhanced magnetic resonance imaging in detecting early adverse remodeling and subacute ventricular wall rupture complicating myocardial infarction. Heart Vessels. 2008;23(6):430–2.

    PubMed  Google Scholar 

  80. Katz RJ, Simpson A, DiBianco R, et al. Noninvasive diagnosis of left ventricular pseudoaneurysm: role of two dimensional echocardiography and radionuclide gated pool imaging. Am J Cardiol. 1979;44(2):372–7.

    CAS  PubMed  Google Scholar 

  81. Birnbaum Y, Fishbein MC, Blanche C, Siegel RJ. Ventricular septal rupture after acute myocardial infarction. N Engl J Med. 2002;347(18):1426–32.

    PubMed  Google Scholar 

  82. Reeder GS. Identification and treatment of complications of myocardial infarction. Mayo Clin Proc. 1995;70:880–4.

    CAS  PubMed  Google Scholar 

  83. Crenshaw BS, Granger CB, Birnbaum Y, et al. Risk factors, angiographic patterns, and outcomes in patients with ventricular septal defect complicating acute myocardial infarction. GUSTO-I (Global Utilization of Streptokinase and TPA for Occluded Coronary Arteries) Trial Investigators. Circulation. 2000;101(1):27–32.

    CAS  PubMed  Google Scholar 

  84. Batts KP, Ackermann DM, Edwards WD. Postinfarction rupture of the left ventricular free wall: clinicopathologic correlates in 100 consecutive autopsy cases. Hum Pathol. 1990;21(5):530–5.

    CAS  PubMed  Google Scholar 

  85. Fortin DF, Sheikh KH, Kisslo J. The utility of echocardiography in the diagnostic strategy of postinfarction ventricular septal rupture: a comparison of two-dimensional echocardiography versus Doppler color flow imaging. Am Heart J. 1991;121(1 Pt 1):25–32.

    CAS  PubMed  Google Scholar 

  86. Smyllie JH, Sutherland GR, Geuskens R, et al. Doppler color flow mapping in the diagnosis of ventricular septal rupture and acute mitral regurgitation after myocardial infarction. J Am Coll Cardiol. 1990;15(6):1449–55.

    CAS  PubMed  Google Scholar 

  87. Freeman WK, Miller FA, Oh JK. Postinfarct ventricular septal rupture: diagnosis and management facilitated by two-dimensional and Doppler echocardiography. Echocardiography. 1987;4:75.

    Google Scholar 

  88. Miyatake K, Okamoto M, Kinoshita N, et al. Doppler echocardiographic features of ventricular septal rupture in myocardial infarction. J Am Coll Cardiol. 1985;5(1):182–7.

    CAS  PubMed  Google Scholar 

  89. Armstrong WF. Echocardiography in coronary artery disease. Prog Cardiovasc Dis. 1988;30(4):267–88.

    CAS  PubMed  Google Scholar 

  90. D’Arcy B, Nanda NC. Two-dimensional echocardiographic features of right ventricular infarction. Circulation. 1982;65(1):167–73.

    PubMed  Google Scholar 

  91. Lopez-Sendon J, Garcia-Fernandez MA, Coma-Canella I, Yanguela MM, Banuelos F. Segmental right ventricular function after acute myocardial infarction: two-dimensional echocardiographic study in 63 patients. Am J Cardiol. 1983;51(3):390–6.

    CAS  PubMed  Google Scholar 

  92. Shah PK, Maddahi J, Berman DS, Pichler M, Swan HJ. Scintigraphically detected predominant right ventricular dysfunction in acute myocardial infarction: clinical and hemodynamic correlates and implications for therapy and prognosis. J Am Coll Cardiol. 1985;6(6):1264–72.

    CAS  PubMed  Google Scholar 

  93. Arditti A, Lewin RF, Hellman C, et al. Right ventricular dysfunction in acute inferoposterior myocardial infarction. An echocardiographic and isotopic study. Chest. 1985;87(3):307–14.

    CAS  PubMed  Google Scholar 

  94. Chiarella F, Santoro E, Domenicucci S, Maggioni A, Vecchio C. Predischarge two-dimensional echocardiographic evaluation of left ventricular thrombosis after acute myocardial infarction in the GISSI-3 study. Am J Cardiol. 1998;81(7):822–7.

    CAS  PubMed  Google Scholar 

  95. Asinger RW, Mikell FL, Elsperger J, Hodges M. Incidence of left-ventricular thrombosis after acute transmural myocardial infarction. Serial evaluation by two-dimensional echocardiography. N Engl J Med. 1981;305(6):297–302.

    CAS  PubMed  Google Scholar 

  96. Greaves SC, Zhi G, Lee RT, et al. Incidence and natural history of left ventricular thrombus following anterior wall acute myocardial infarction. Am J Cardiol. 1997;80(4):442–8.

    CAS  PubMed  Google Scholar 

  97. Keren A, Goldberg S, Gottlieb S, et al. Natural history of left ventricular thrombi: their appearance and resolution in the posthospitalization period of acute myocardial infarction. J Am Coll Cardiol. 1990;15(4):790–800.

    CAS  PubMed  Google Scholar 

  98. Come PC, Riley MF, Weintraub R, Morgan JP, Nakao S. Echocardiographic detection of complete and partial papillary muscle rupture during acute myocardial infarction. Am J Cardiol. 1985;56(12):787–9.

    CAS  PubMed  Google Scholar 

  99. Nixon JV. Left ventricular mural thrombus. Arch Intern Med. 1983;143(8):1567–71.

    CAS  PubMed  Google Scholar 

  100. Visser CA, Kan G, Meltzer RS, Dunning AJ, Roelandt J. Embolic potential of left ventricular thrombus after myocardial infarction: a two-dimensional echocardiographic study of 119 patients. J Am Coll Cardiol. 1985;5(6):1276–80.

    CAS  PubMed  Google Scholar 

  101. Come PC, Markis JE, Vine HS, et al. Echocardiographic diagnosis of left ventricular thrombi. Am Heart J. 1980;100(4):523–30.

    CAS  PubMed  Google Scholar 

  102. Stratton JR, Lighty Jr GW, Pearlman AS, Ritchie JL. Detection of left ventricular thrombus by two-dimensional echocardiography: sensitivity, specificity, and causes of uncertainty. Circulation. 1982;66(1):156–66.

    CAS  PubMed  Google Scholar 

  103. Haugland JM, Asinger RW, Mikell FL, Elsperger J, Hodges M. Embolic potential of left ventricular thrombi detected by two-dimensional echocardiography. Circulation. 1984;70(4):588–98.

    CAS  PubMed  Google Scholar 

  104. Visser CA, Kan G, Meltzer RS, Koolen JJ, Dunning AJ. Incidence, timing and prognostic value of left ventricular aneurysm formation after myocardial infarction: a prospective, serial echocardiographic study of 158 patients. Am J Cardiol. 1986;57(10):729–32.

    CAS  PubMed  Google Scholar 

  105. Sanders RJ, Neubuerger KT, Ravin A. Rupture of papillary muscles: occurrence of rupture of the posterior muscle in posterior myocardial infarction. Dis Chest. 1957;31(3):316–23.

    CAS  PubMed  Google Scholar 

  106. Buda AJ. The role of echocardiography in the evaluation of mechanical complications of acute myocardial infarction. Circulation. 1991;84(3 Suppl):I109–21.

    CAS  PubMed  Google Scholar 

  107. Nishimura RA, Schaff HV, Shub C, et al. Papillary muscle rupture complicating acute myocardial infarction: analysis of 17 patients. Am J Cardiol. 1983;51(3):373–7.

    CAS  PubMed  Google Scholar 

  108. Sanders RJ, Kern WH, Blount Jr SG. Perforation of the interventricular septum complicating myocardial infarction; a report of eight cases, one with cardiac catheterization. Am Heart J. 1956;51(5):736–48.

    CAS  PubMed  Google Scholar 

  109. Lechman KG, Francis CK, Dodge HT. Mitral regurgitation in early myocardial infarction is the strongest predictor of mortality. Circulation. 1986;74(Suppl II):II-304.

    Google Scholar 

  110. Lim YJ, Masuyama T, Nanto S, et al. Left ventricular papillary muscle perfusion assessed with myocardial contrast echocardiography. Am J Cardiol. 1996;78(8):955–8.

    CAS  PubMed  Google Scholar 

  111. Nishimura RA, Shub C, Tajik AJ. Two dimensional echocardiographic diagnosis of partial papillary muscle rupture. Br Heart J. 1982;48(6):598–600.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Vlodaver Z, Edwards JE. Rupture of ventricular septum or papillary muscle complicating myocardial infarction. Circulation. 1977;55(5):815–22.

    CAS  PubMed  Google Scholar 

  113. Moursi MH, Bhatnagar SK, Vilacosta I, et al. Transesophageal echocardiographic assessment of papillary muscle rupture. Circulation. 1996;94(5):1003–9.

    CAS  PubMed  Google Scholar 

  114. Levine RA, Schwammenthal E. Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation. 2005;112(5):745–58.

    PubMed  Google Scholar 

  115. Pierard LA, Carabello BA. Ischaemic mitral regurgitation: pathophysiology, outcomes and the conundrum of treatment. Eur Heart J. 2010;31(24):2996–3005.

    PubMed  Google Scholar 

  116. Birnbaum Y, Chamoun AJ, Conti VR, Uretsky BF. Mitral regurgitation following acute myocardial infarction. Coron Artery Dis. 2002;13(6):337–44.

    PubMed  Google Scholar 

  117. Feinberg MS, Schwammenthal E, Shlizerman L, et al. Prognostic significance of mild mitral regurgitation by color Doppler echocardiography in acute myocardial infarction. Am J Cardiol. 2000;86(9):903–7.

    CAS  PubMed  Google Scholar 

  118. Kumanohoso T, Otsuji Y, Yoshifuku S, et al. Mechanism of higher incidence of ischemic mitral regurgitation in patients with inferior myocardial infarction: quantitative analysis of left ventricular and mitral valve geometry in 103 patients with prior myocardial infarction. J Thorac Cardiovasc Surg. 2003;125(1):135–43.

    PubMed  Google Scholar 

  119. Lamas GA, Mitchell GF, Flaker GC, et al. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and Ventricular Enlargement Investigators. Circulation. 1997;96(3):827–33.

    CAS  PubMed  Google Scholar 

  120. Trichon BH, Felker GM, Shaw LK, Cabell CH, O’Connor CM. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol. 2003;91(5):538–43.

    PubMed  Google Scholar 

  121. Picard MH, Davidoff R, Sleeper LA, et al. Echocardiographic predictors of survival and response to early revascularization in cardiogenic shock. Circulation. 2003;107(2):279–84.

    PubMed  Google Scholar 

  122. Pellizzon GG, Grines CL, Cox DA, et al. Importance of mitral regurgitation inpatients undergoing percutaneous coronary intervention for acute myocardial infarction: the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) trial. J Am Coll Cardiol. 2004;​43(8):1368–74.

    PubMed  Google Scholar 

  123. Tcheng JE, Jackman Jr JD, Nelson CL, et al. Outcome of patients sustaining acute ischemic mitral regurgitation during myocardial infarction. Ann Intern Med. 1992;117(1):18–24.

    CAS  PubMed  Google Scholar 

  124. Bursi F, Enriquez-Sarano M, Nkomo VT, et al. Heart failure and death after myocardial infarction in the community: the emerging role of mitral regurgitation. Circulation. 2005;111(3):295–301.

    PubMed  Google Scholar 

  125. Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001;103(13):1759–64.

    CAS  PubMed  Google Scholar 

  126. He S, Fontaine AA, Schwammenthal E, Yoganathan AP, Levine RA. Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation. 1997;96(6):1826–34.

    CAS  PubMed  Google Scholar 

  127. Kaul S, Spotnitz WD, Glasheen WP, Touchstone DA. Mechanism of ischemic mitral regurgitation. An experimental evaluation. Circulation. 1991;84(5):2167–80.

    CAS  PubMed  Google Scholar 

  128. Otsuji Y, Handschumacher MD, Schwammenthal E, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997;96(6):​1999–2008.

    CAS  PubMed  Google Scholar 

  129. Levine RA. Dynamic mitral regurgitation–more than meets the eye. N Engl J Med. 2004;351(16):1681–4.

    CAS  PubMed  Google Scholar 

  130. Aklog L, Filsoufi F, Flores KQ, et al. Does coronary artery bypass grafting alone correct moderate ischemic mitral regurgitation? Circulation. 2001;104(12 Suppl 1):I68–75.

    CAS  PubMed  Google Scholar 

  131. Bach DS, Deeb GM, Bolling SF. Accuracy of intraoperative transesophageal echocardiography for estimating the severity of functional mitral regurgitation. Am J Cardiol. 1995;76(7):508–12.

    CAS  PubMed  Google Scholar 

  132. Sheikh KH, Bengtson JR, Rankin JS, de Bruijn NP, Kisslo J. Intraoperative transesophageal Doppler color flow imaging used to guide patient selection and operative treatment of ischemic mitral regurgitation. Circulation. 1991;84(2):594–604.

    CAS  PubMed  Google Scholar 

  133. Lancellotti P, Lebrun F, Pierard LA. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2003;42(11):1921–8.

    PubMed  Google Scholar 

  134. Lancellotti P, Troisfontaines P, Toussaint AC, Pierard LA. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation. 2003;108(14):1713–7.

    PubMed  Google Scholar 

  135. Pierard LA, Lancellotti P. The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N Engl J Med. 2004;351(16):1627–34.

    CAS  PubMed  Google Scholar 

  136. Little SH, Pirat B, Kumar R, et al. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging. 2008;1(6):695–704.

    PubMed Central  PubMed  Google Scholar 

  137. Hall SA, Brickner ME, Willett DL, et al. Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation. 1997;95(3):636–42.

    CAS  PubMed  Google Scholar 

  138. Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11(4):307–32.

    PubMed  Google Scholar 

  139. Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802.

    PubMed  Google Scholar 

  140. Ray S. The echocardiographic assessment of functional mitral regurgitation. Eur J Echocardiogr. 2010;11(10):i11–7.

    PubMed  Google Scholar 

  141. Ryan T, Petrovic O, Armstrong WF, Dillon JC, Feigenbaum H. Quantitative two-dimensional echocardiographic assessment of patients undergoing left ventricular aneurysmectomy. Am Heart J. 1986;111(4):714–20.

    CAS  PubMed  Google Scholar 

  142. Schlichter J, Hellerstein HK, Katz LN. Aneurysm of the heart: a correlative study of one hundred and two proved cases. Medicine (Baltimore). 1954;33(1):43–86.

    CAS  Google Scholar 

  143. Grosso MA, Harken AH. Left ventricular aneurysm. In: Kirklin JW, Barratt-Boyes B, editors. Cardiac surgery. New York: Churchill Livingstone; 1993. p. 383.

    Google Scholar 

  144. Weyman AE, Peskoe SM, Williams ES, Dillon JC, Feigenbaum H. Detection of left ventricular aneurysms by cross-sectional echocardiography. Circulation. 1976;54(6):936–44.

    CAS  PubMed  Google Scholar 

  145. Abrams DL, Edelist A, Luria MH, Miller AJ. Ventricular aneurysm: a reappraisal based on a study of sixty-five consecutive autopsied cases. Circulation. 1963;27:164–9.

    CAS  PubMed  Google Scholar 

  146. Dubnow MH, Burchell HB, Titus JL. Postinfarction ventricular aneurysm. A clinicomorphologic and electrocardiographic study of 80 cases. Am Heart J. 1965;70(6):753–60.

    CAS  PubMed  Google Scholar 

  147. Lengyel M, Tajik AJ, Seward JB, Hagler DJ, Smith HC. Sensitivity and specificity of two-dimensional echocardiography in the detection of left ventricular aneurysms. Am J Cardiol. 1980;​45:436.

    Google Scholar 

  148. Loh E, Sutton MS, Wun CC, et al. Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med. 1997;336(4):251–7.

    CAS  PubMed  Google Scholar 

  149. Vlodaver Z, Coe JI, Edwards JE. True and false left ventricular aneurysms. Propensity for the altter to rupture. Circulation. 1975;51(3):567–72.

    CAS  PubMed  Google Scholar 

  150. Williams Jr TW, Peabody CA, Pruitt RD. Calcified aneurysm of the left ventricular apex associated with intraventricular block of the left bundle branch type. Am Heart J. 1962;63:557–9.

    Google Scholar 

  151. Dor V. Left ventricular aneurysms: the endoventricular circular patch plasty. Semin Thorac Cardiovasc Surg. 1997;9(2):123–30.

    CAS  PubMed  Google Scholar 

  152. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.

    CAS  PubMed  Google Scholar 

  153. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981–8.

    CAS  PubMed  Google Scholar 

  154. Rumberger JA, Behrenbeck T, Breen JR, Reed JE, Gersh BJ. Nonparallel changes in global left ventricular chamber volume and muscle mass during the first year after transmural myocardial infarction in humans. J Am Coll Cardiol. 1993;21(3):673–82.

    CAS  PubMed  Google Scholar 

  155. Anversa P, Capasso JM, Olivetti G, Sonnenblick EH. Cellular basis of ventricular remodeling in hypertensive cardiomyopathy. Am J Hypertens. 1992;5(10):758–70.

    CAS  PubMed  Google Scholar 

  156. Hochman JS, Bulkley BH. Expansion of acute myocardial infarction: an experimental study. Circulation. 1982;65(7):1446–50.

    CAS  PubMed  Google Scholar 

  157. Korup E, Dalsgaard D, Nyvad O, et al. Comparison of degrees of left ventricular dilation within three hours and up to six days after onset of first acute myocardial infarction. Am J Cardiol. 1997;80(4):449–53.

    CAS  PubMed  Google Scholar 

  158. Giannuzzi P, Temporelli PL, Bosimini E, et al. Heterogeneity of left ventricular remodeling after acute myocardial infarction: results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-3 Echo Substudy. Am Heart J. 2001;141(1):131–8.

    CAS  PubMed  Google Scholar 

  159. Weisman HF, Bush DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after acute myocardial infarction: a study in the rat model. J Am Coll Cardiol. 1985;5(6):1355–62.

    CAS  PubMed  Google Scholar 

  160. McKay RG, Pfeffer MA, Pasternak RC, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986;74(4):693–702.

    CAS  PubMed  Google Scholar 

  161. Gaudron P, Eilles C, Kugler I, Ertl G. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation. 1993;87(3):755–63.

    CAS  PubMed  Google Scholar 

  162. Mitchell GF, Lamas GA, Vaughan DE, Pfeffer MA. Left ventricular remodeling in the year after first anterior myocardial infarction: a quantitative analysis of contractile segment lengths and ventricular shape. J Am Coll Cardiol. 1992;19(6):1136–44.

    CAS  PubMed  Google Scholar 

  163. Appleton CP, Hatle LK, Popp RL. Cardiac tamponade and pericardial effusion: respiratory variation in transvalvular flow velocities studied by Doppler echocardiography. J Am Coll Cardiol. 1988;11(5):1020–30.

    CAS  PubMed  Google Scholar 

  164. Horowitz RS, Morganroth J. Immediate detection of early high-risk patients with acute myocardial infarction using two-dimensional echocardiographic evaluation of left ventricular regional wall motion abnormalities. Am Heart J. 1982;103(5):814–22.

    CAS  PubMed  Google Scholar 

  165. Nishimura RA, Reeder GS, Miller Jr FA, et al. Prognostic value of predischarge 2-dimensional echocardiogram after acute myocardial infarction. Am J Cardiol. 1984;53(4):429–32.

    CAS  PubMed  Google Scholar 

  166. Nishimura RA, Tajik AJ, Shub C, et al. Role of two-dimensional echocardiography in the prediction of in-hospital complications after acute myocardial infarction. J Am Coll Cardiol. 1984;4(6):1080–7.

    CAS  PubMed  Google Scholar 

  167. Gottlieb S, Moss AJ, McDermott M, Eberly S. Interrelation of left ventricular ejection fraction, pulmonary congestion and outcome in acute myocardial infarction. Am J Cardiol. 1992;69(12):977–84.

    CAS  PubMed  Google Scholar 

  168. Lee KL, Woodlief LH, Topol EJ, et al. Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. GUSTO-I Investigators. Circulation. 1995;91(6):1659–68.

    CAS  PubMed  Google Scholar 

  169. Liebson PR, Klein LW. The non-Q wave myocardial infarction revisited: 10 years later. Prog Cardiovasc Dis. 1997;39(5):399–444.

    CAS  PubMed  Google Scholar 

  170. Zornoff LA, Skali H, Pfeffer MA, et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol. 2002;39(9):1450–5.

    PubMed  Google Scholar 

  171. White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76(1):44–51.

    CAS  PubMed  Google Scholar 

  172. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327(10):669–77.

    CAS  PubMed  Google Scholar 

  173. Quinones MA, Greenberg BH, Kopelen HA, et al. Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials: significance of left ventricular hypertrophy. Studies of Left Ventricular Dysfunction. J Am Coll Cardiol. 2000;35(5):1237–44.

    CAS  PubMed  Google Scholar 

  174. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.

    CAS  PubMed  Google Scholar 

  175. Grayburn PA, Appleton CP, DeMaria AN, et al. Echocardiographic predictors of morbidity and mortality in patients with advanced heart failure: the Beta-blocker Evaluation of Survival Trial (BEST). J Am Coll Cardiol. 2005;45(7):1064–71.

    PubMed  Google Scholar 

  176. Gillinov AM, Wierup PN, Blackstone EH, et al. Is repair preferable to replacement for ischemic mitral regurgitation? J Thorac Cardiovasc Surg. 2001;122(6):1125–41.

    CAS  PubMed  Google Scholar 

  177. Lehmann KG, Francis CK, Dodge HT. Mitral regurgitation in early myocardial infarction. Incidence, clinical detection, and prognostic implications. TIMI Study Group. Ann Intern Med. 1992;117(1):10–7.

    CAS  PubMed  Google Scholar 

  178. Barzilai B, Davis VG, Stone PH, Jaffe AS. Prognostic significance of mitral regurgitation in acute myocardial infarction. The MILIS Study Group. Am J Cardiol. 1990;65(18):1169–75.

    CAS  PubMed  Google Scholar 

  179. Grigioni F, Detaint D, Avierinos JF, et al. Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J Am Coll Cardiol. 2005;45(2):260–7.

    PubMed  Google Scholar 

  180. Moller JE, Hillis GS, Oh JK, et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation. 2003;107(17):2207–12.

    PubMed  Google Scholar 

  181. Wang M, Yip GW, Wang AY, et al. Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J Am Coll Cardiol. 2003;41(5):820–6.

    PubMed  Google Scholar 

  182. Hillis GS, Moller JE, Pellikka PA, et al. Noninvasive estimation of left ventricular filling pressure by E/e’ is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol. 2004;43(3):360–7.

    PubMed  Google Scholar 

  183. Dokainish H, Zoghbi WA, Lakkis NM, et al. Incremental predictive power of B-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardiol. 2005;45(8):1223–6.

    CAS  PubMed  Google Scholar 

  184. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66(6):1146–9.

    CAS  PubMed  Google Scholar 

  185. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117(1):211–21.

    CAS  PubMed  Google Scholar 

  186. Canty Jr JM, Suzuki G, Banas MD, et al. Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res. 2004;94(8):1142–9.

    CAS  PubMed  Google Scholar 

  187. Roger VL, Pellikka PA, Oh JK, et al. Stress echocardiography. Part I. Exercise echocardiography: techniques, implementation, clinical applications, and correlations. Mayo Clin Proc. 1995;70(1):5–15.

    CAS  PubMed  Google Scholar 

  188. Badruddin SM, Ahmad A, Mickelson J, et al. Supine bicycle versus post-treadmill exercise echocardiography in the detection of myocardial ischemia: a randomized single-blind crossover trial. J Am Coll Cardiol. 1999;33(6):1485–90.

    CAS  PubMed  Google Scholar 

  189. Pellikka PA, Nagueh SF, Elhendy AA, et al. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007;20(9):1021–41.

    PubMed  Google Scholar 

  190. Ling LH, Pellikka PA, Mahoney DW, et al. Atropine augmentation in dobutamine stress echocardiography: role and incremental value in a clinical practice setting. J Am Coll Cardiol. 1996;28(3):551–7.

    CAS  PubMed  Google Scholar 

  191. Mertes H, Sawada SG, Ryan T, et al. Symptoms, adverse effects, and complications associated with dobutamine stress echocardiography. Experience in 1118 patients. Circulation. 1993;88(1):15–9.

    CAS  PubMed  Google Scholar 

  192. Secknus MA, Marwick TH. Safety and efficacy of dobutamineatropine stress: prediction of submaximal stress in 3020 patients studied at a single center. Circulation. 1996;94(suppl I):I-383.

    Google Scholar 

  193. Pellikka PA, Roger VL, Oh JK, et al. Stress echocardiography. Part II. Dobutamine stress echocardiography: techniques, implementation, clinical applications, and correlations. Mayo Clin Proc. 1995;70(1):16–27.

    CAS  PubMed  Google Scholar 

  194. Mathias Jr W, Arruda A, Santos FC, et al. Safety of dobutamine-atropine stress echocardiography: a prospective experience of 4,033 consecutive studies. J Am Soc Echocardiogr. 1999;12(10):785–91.

    PubMed  Google Scholar 

  195. Pellikka PA, Oh JK, Bailey KR, et al. Dynamic intraventricular obstruction during dobutamine stress echocardiography. A new observation. Circulation. 1992;86(5):1429–32.

    CAS  PubMed  Google Scholar 

  196. Secknus MA, Niedermaier ON, Lauer MS, Marwick TH. Diagnostic and prognostic implications of left ventricular cavity obliteration response to dobutamine echocardiography. Am J Cardiol. 1998;81(11):1318–22.

    CAS  PubMed  Google Scholar 

  197. Dawn B, Paliwal VS, Raza ST, et al. Left ventricular outflow tract obstruction provoked during dobutamine stress echocardiography predicts future chest pain, syncope, and near syncope. Am Heart J. 2005;149(5):908–16.

    PubMed  Google Scholar 

  198. Armstrong WF, O’Donnell J, Ryan T, Feigenbaum H. Effect of prior myocardial infarction and extent and location of coronary disease on accuracy of exercise echocardiography. J Am Coll Cardiol. 1987;10(3):531–8.

    CAS  PubMed  Google Scholar 

  199. Beleslin BD, Ostojic M, Stepanovic J, et al. Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation. 1994;90(3):1168–76.

    CAS  PubMed  Google Scholar 

  200. Crouse LJ, Harbrecht JJ, Vacek JL, Rosamond TL, Kramer PH. Exercise echocardiography as a screening test for coronary artery disease and correlation with coronary arteriography. Am J Cardiol. 1991;67(15):1213–8.

    CAS  PubMed  Google Scholar 

  201. Hecht HS, DeBord L, Shaw R, et al. Digital supine bicycle stress echocardiography: a new technique for evaluating coronary artery disease. J Am Coll Cardiol. 1993;21(4):950–6.

    CAS  PubMed  Google Scholar 

  202. Luotolahti M, Saraste M, Hartiala J. Exercise echocardiography in the diagnosis of coronary artery disease. Ann Med. 1996;28(1):73–7.

    CAS  PubMed  Google Scholar 

  203. Marwick TH, Anderson T, Williams MJ, et al. Exercise echocardiography is an accurate and cost-efficient technique for detection of coronary artery disease in women. J Am Coll Cardiol. 1995;26(2):335–41.

    CAS  PubMed  Google Scholar 

  204. Marwick TH, Nemec JJ, Pashkow FJ, Stewart WJ, Salcedo EE. Accuracy and limitations of exercise echocardiography in a routine clinical setting. J Am Coll Cardiol. 1992;19(1):74–81.

    CAS  PubMed  Google Scholar 

  205. Marwick TH, Torelli J, Harjai K, et al. Influence of left ventricular hypertrophy on detection of coronary artery disease using exercise echocardiography. J Am Coll Cardiol. 1995;26(5):1180–6.

    CAS  PubMed  Google Scholar 

  206. Quinones MA, Verani MS, Haichin RM, et al. Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients. Circulation. 1992;85(3):1026–31.

    CAS  PubMed  Google Scholar 

  207. Roger VL, Pellikka PA, Bell MR, et al. Sex and test verification bias. Impact on the diagnostic value of exercise echocardiography. Circulation. 1997;95(2):405–10.

    CAS  PubMed  Google Scholar 

  208. Roger VL, Pellikka PA, Oh JK, Bailey KR, Tajik AJ. Identification of multivessel coronary artery disease by exercise echocardiography. J Am Coll Cardiol. 1994;24(1):109–14.

    CAS  PubMed  Google Scholar 

  209. Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA. 1998;280:913–20.

    CAS  PubMed  Google Scholar 

  210. Garber AM, Solomon NA. Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Ann Intern Med. 1999;130(9):719–28.

    CAS  PubMed  Google Scholar 

  211. Marwick T, D’Hondt AM, Baudhuin T, et al. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol. 1993;22(1):159–67.

    CAS  PubMed  Google Scholar 

  212. Marwick TH, Cook SA, Lafont A, Underwood DA, Salcedo EE. Influence of left ventricular mass on the diagnostic accuracy of myocardial perfusion imaging using positron emission tomography with dipyridamole stress. J Nucl Med. 1991;32(12):​2221–6.

    CAS  PubMed  Google Scholar 

  213. Brown K. Do stress echocardiography and myocardial perfusion imaging have the same ability to identify low-risk patients with known or suspected coronary artery disease? Am J Cardiol. 1998;81:1050–3.

    CAS  PubMed  Google Scholar 

  214. Armstrong WF. Stress echocardiography: introduction, history, and methods. Prog Cardiovasc Dis. 1997;39(6):499–522.

    CAS  PubMed  Google Scholar 

  215. Pozzoli MM, Fioretti PM, Salustri A, Reijs AE, Roelandt JR. Exercise echocardiography and technetium-99m MIBI single-photon emission computed tomography in the detection of coronary artery disease. Am J Cardiol. 1991;67(5):350–5.

    CAS  PubMed  Google Scholar 

  216. Arruda-Olson AM, Juracan EM, Mahoney DW, et al. Prognostic value of exercise echocardiography in 5,798 patients: is there a gender difference? J Am Coll Cardiol. 2002;39(4):625–31.

    PubMed  Google Scholar 

  217. Marwick TH, Case C, Vasey C, et al. Prediction of mortality by exercise echocardiography: a strategy for combination with the duke treadmill score. Circulation. 2001;103(21):2566–71.

    CAS  PubMed  Google Scholar 

  218. McCully RB, Roger VL, Mahoney DW, et al. Outcome after abnormal exercise echocardiography for patients with good exercise capacity: prognostic importance of the extent and severity of exercise-related left ventricular dysfunction. J Am Coll Cardiol. 2002;39(8):1345–52.

    PubMed  Google Scholar 

  219. Olmos LI, Dakik H, Gordon R, et al. Long-term prognostic value of exercise echocardiography compared with exercise 201Tl, ECG, and clinical variables in patients evaluated for coronary artery disease. Circulation. 1998;98(24):2679–86.

    CAS  PubMed  Google Scholar 

  220. McCully RB, Roger VL, Mahoney DW, et al. Outcome after normal exercise echocardiography and predictors of subsequent cardiac events: follow-up of 1,325 patients. J Am Coll Cardiol. 1998;31(1):144–9.

    CAS  PubMed  Google Scholar 

  221. Mazur W, Rivera JM, Khoury AF, et al. Prognostic value of exercise echocardiography: validation of a new risk index combining echocardiographic, treadmill, and exercise electrocardiographic parameters. J Am Soc Echocardiogr. 2003;16(4):318–25.

    PubMed  Google Scholar 

  222. Metz LD, Beattie M, Hom R, et al. The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis. J Am Coll Cardiol. 2007;49(2):227–37.

    PubMed  Google Scholar 

  223. Bartunek J, Marwick TH, Rodrigues AC, et al. Dobutamine-induced wall motion abnormalities: correlations with myocardial fractional flow reserve and quantitative coronary angiography. J Am Coll Cardiol. 1996;27(6):1429–36.

    CAS  PubMed  Google Scholar 

  224. Hoffmann R, Lethen H, Kuhl H, Lepper W, Hanrath P. Extent and severity of test positivity during dobutamine stress echocardiography. Influence on the predictive value for coronary artery disease. Eur Heart J. 1999;20(20):1485–92.

    CAS  PubMed  Google Scholar 

  225. Monaghan MJ. Second harmonic imaging: a new tune for an old fiddle? Heart. 2000;83(2):131–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  226. Zoghbi WA. Evaluation of myocardial viability with contrast echocardiography. Am J Cardiol. 2002;90(10A):65J–71.

    PubMed  Google Scholar 

  227. Geleijnse ML, Fioretti PM, Roelandt JR. Methodology, feasibility, safety and diagnostic accuracy of dobutamine stress echocardiography. J Am Coll Cardiol. 1997;30(3):595–606.

    CAS  PubMed  Google Scholar 

  228. Iskandrian AS, Verani MS, Heo J. Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol. 1994;1(1):94–111.

    CAS  PubMed  Google Scholar 

  229. Kim C, Kwok YS, Heagerty P, Redberg R. Pharmacologic stress testing for coronary disease diagnosis: a meta-analysis. Am Heart J. 2001;142(6):934–44.

    CAS  PubMed  Google Scholar 

  230. Marcovitz PA, Armstrong WF. Accuracy of dobutamine stress echocardiography in detecting coronary artery disease. Am J Cardiol. 1992;69(16):1269–73.

    CAS  PubMed  Google Scholar 

  231. McNeill AJ, Fioretti PM, el-Said SM, et al. Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine stress echocardiography. Am J Cardiol. 1992;70(1):41–6.

    CAS  PubMed  Google Scholar 

  232. O’Keefe Jr JH, Barnhart CS, Bateman TM. Comparison of stress echocardiography and stress myocardial perfusion scintigraphy for diagnosing coronary artery disease and assessing its severity. Am J Cardiol. 1995;75(11):25D–34.

    PubMed  Google Scholar 

  233. Previtali M, Lanzarini L, Fetiveau R, et al. Comparison of dobutamine stress echocardiography, dipyridamole stress echocardiography and exercise stress testing for diagnosis of coronary artery disease. Am J Cardiol. 1993;72(12):865–70.

    CAS  PubMed  Google Scholar 

  234. Segar DS, Brown SE, Sawada SG, Ryan T, Feigenbaum H. Dobutamine stress echocardiography: correlation with coronary lesion severity as determined by quantitative angiography. J Am Coll Cardiol. 1992;19(6):1197–202.

    CAS  PubMed  Google Scholar 

  235. Takeuchi M, Araki M, Nakashima Y, Kuroiwa A. Comparison of dobutamine stress echocardiography and stress thallium-201 single-photon emission computed tomography for detecting coronary artery disease. J Am Soc Echocardiogr. 1993;6(6):​593–602.

    CAS  PubMed  Google Scholar 

  236. Verani MS. Pharmacologic stress myocardial perfusion imaging. Curr Probl Cardiol. 1993;18(8):481–525.

    CAS  PubMed  Google Scholar 

  237. Chuah SC, Pellikka PA, Roger VL, McCully RB, Seward JB. Role of dobutamine stress echocardiography in predicting outcome in 860 patients with known or suspected coronary artery disease. Circulation. 1998;97(15):1474–80.

    CAS  PubMed  Google Scholar 

  238. Schinkel AF, Bax JJ, Elhendy A, et al. Long-term prognostic value of dobutamine stress echocardiography compared with myocardial perfusion scanning in patients unable to perform exercise tests. Am J Med. 2004;117(1):1–9.

    PubMed  Google Scholar 

  239. Shaw LJ, Vasey C, Sawada S, Rimmerman C, Marwick TH. Impact of gender on risk stratification by exercise and dobutamine stress echocardiography: long-term mortality in 4234 women and 6898 men. Eur Heart J. 2005;26(5):447–56.

    PubMed  Google Scholar 

  240. Poldermans D, Fioretti PM, Boersma E, et al. Long-term prognostic value of dobutamine-atropine stress echocardiography in 1737 patients with known or suspected coronary artery disease: a single-center experience. Circulation. 1999;99(6):757–62.

    CAS  PubMed  Google Scholar 

  241. Bax JJ, van der Wall EE, Harbinson M. Radionuclide techniques for the assessment of myocardial viability and hibernation. Heart. 2004;90 Suppl 5:v26–33.

    PubMed Central  PubMed  Google Scholar 

  242. Cleland JG, Pennell DJ, Ray SG, et al. Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet. 2003;362(9377):14–21.

    CAS  PubMed  Google Scholar 

  243. Baker DW, Jones R, Hodges J, et al. Management of heart failure. III. The role of revascularization in the treatment of patients with moderate or severe left ventricular systolic dysfunction. JAMA. 1994;272(19):1528–34.

    CAS  PubMed  Google Scholar 

  244. Gropler RJ, Bergmann SR. Flow and metabolic determinants of myocardial viability assessed by positron-emission tomography. Coron Artery Dis. 1993;4(6):495–504.

    CAS  PubMed  Google Scholar 

  245. Sawada SG, Allman KC, Muzik O, et al. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects. J Am Coll Cardiol. 1994;23(1):92–8.

    CAS  PubMed  Google Scholar 

  246. Chareonthaitawee P, Gersh BJ, Araoz PA, Gibbons RJ. Revascularization in severe left ventricular dysfunction: the role of viability testing. J Am Coll Cardiol. 2005;46(4):567–74.

    PubMed  Google Scholar 

  247. Afridi I, Grayburn PA, Panza JA, et al. Myocardial viability during dobutamine echocardiography predicts survival in patients with coronary artery disease and severe left ventricular systolic dysfunction. J Am Coll Cardiol. 1998;32(4):921–6.

    CAS  PubMed  Google Scholar 

  248. Carlos ME, Smart SC, Wynsen JC, Sagar KB. Dobutamine stress echocardiography for risk stratification after myocardial infarction. Circulation. 1997;95(6):1402–10.

    CAS  PubMed  Google Scholar 

  249. Quintana M, Lindvall K, Ryden L, Brolund F. Prognostic value of predischarge exercise stress echocardiography after acute myocardial infarction. Am J Cardiol. 1995;76(16):1115–21.

    CAS  PubMed  Google Scholar 

  250. Smart SC, Knickelbine T, Stoiber TR, et al. Safety and accuracy of dobutamine-atropine stress echocardiography for the detection of residual stenosis of the infarct-related artery and multivessel disease during the first week after acute myocardial infarction. Circulation. 1997;95(6):1394–401.

    CAS  PubMed  Google Scholar 

  251. Sicari R, Landi P, Picano E, et al. Exercise-electrocardiography and/or pharmacological stress echocardiography for non-invasive risk stratification early after uncomplicated myocardial infarction. A prospective international large scale multicentre study. Eur Heart J. 2002;23(13):1030–7.

    CAS  PubMed  Google Scholar 

  252. Afridi I, Kleiman NS, Raizner AE, Zoghbi WA. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation. 1995;91(3):663–70.

    CAS  PubMed  Google Scholar 

  253. La Canna G, Alfieri O, Giubbini R, et al. Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994;23(3):617–26.

    PubMed  Google Scholar 

  254. Arnese M, Cornel JH, Salustri A, et al. Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201Tl single-photon emission computed tomography. Circulation. 1995;91(11):2748–52.

    CAS  PubMed  Google Scholar 

  255. Charney R, Schwinger ME, Chun J, et al. Dobutamine echocardiography and resting-redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J. 1994;128(5):864–9.

    CAS  PubMed  Google Scholar 

  256. Perrone-Filardi P, Pace L, Prastaro M, et al. Dobutamine echocardiography predicts improvement of hypoperfused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation. 1995;91(10):2556–65.

    CAS  PubMed  Google Scholar 

  257. Vanoverschelde JL, D’Hondt AM, Marwick T, et al. Head-to-head comparison of exercise-redistribution-reinjection thallium single-photon emission computed tomography and low dose dobutamine echocardiography for prediction of reversibility of chronic left ventricular ischemic dysfunction. J Am Coll Cardiol. 1996;28(2):432–42.

    CAS  PubMed  Google Scholar 

  258. deFilippi CR, Willett DL, Irani WN, et al. Comparison of myocardial contrast echocardiography and low-dose dobutamine stress echocardiography in predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation. 1995;92(10):2863–8.

    CAS  PubMed  Google Scholar 

  259. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26(2):141–86.

    Google Scholar 

  260. Qureshi U, Nagueh SF, Afridi I, et al. Dobutamine echocardiography and quantitative rest-redistribution 201Tl tomography in myocardial hibernation. Relation of contractile reserve to 201Tl uptake and comparative prediction of recovery of function. Circulation. 1997;95(3):626–35.

    CAS  PubMed  Google Scholar 

  261. Bax JJ, Wijns W, Cornel JH, et al. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol. 1997;30(6):1451–60.

    CAS  PubMed  Google Scholar 

  262. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99(6):763–70.

    CAS  PubMed  Google Scholar 

  263. Cwajg JM, Cwajg E, Nagueh SF, et al. End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution T1-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol. 2000;35(5):1152–61.

    CAS  PubMed  Google Scholar 

  264. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8.

    PubMed  Google Scholar 

  265. Melo LG, Pachori AS, Kong D, et al. Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism. Circulation. 2004;109(20):2386–93.

    PubMed  Google Scholar 

  266. Uematsu M, Miyatake K, Tanaka N, et al. Myocardial velocity gradient as a new indicator of regional left ventricular contraction: detection by a two-dimensional tissue Doppler imaging technique. J Am Coll Cardiol. 1995;26(1):217–23.

    CAS  PubMed  Google Scholar 

  267. Edvardsen T, Gerber BL, Garot J, et al. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002;106(1):50–6.

    PubMed  Google Scholar 

  268. Langeland S, D’Hooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation. 2005;112(14):2157–62.

    PubMed  Google Scholar 

  269. Jamal F, Strotmann J, Weidemann F, et al. Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain. Circulation. 2001;104(9):1059–65.

    CAS  PubMed  Google Scholar 

  270. Weidemann F, Dommke C, Bijnens B, et al. Defining the transmurality of a chronic myocardial infarction by ultrasonic strain-rate imaging: implications for identifying intramural viability: an experimental study. Circulation. 2003;107(6):883–8.

    PubMed  Google Scholar 

  271. Lyseggen E, Skulstad H, Helle-Valle T, et al. Myocardial strain analysis in acute coronary occlusion: a tool to assess myocardial viability and reperfusion. Circulation. 2005;112(25):3901–10.

    PubMed  Google Scholar 

  272. Hanekom L, Jenkins C, Jeffries L, et al. Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography: a follow-up study after revascularization. Circulation. 2005;112(25):3892–900.

    PubMed  Google Scholar 

  273. Zhang Y, Chan AK, Yu CM, et al. Strain rate imaging differentiates transmural from non-transmural myocardial infarction: a validation study using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol. 2005;46(5):864–71.

    PubMed  Google Scholar 

  274. Kaul S. New developments in ultrasound systems for contrast echocardiography. Clin Cardiol. 1997;20(10 Suppl 1):I27–30.

    CAS  PubMed  Google Scholar 

  275. Firschke C, Lindner JR, Wei K, et al. Myocardial perfusion imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of a second-generation echocardiographic contrast agent. Circulation. 1997;96(3):959–67.

    CAS  PubMed  Google Scholar 

  276. Colon 3rd PJ, Richards DR, Moreno CA, Murgo JP, Cheirif J. Benefits of reducing the cardiac cycle-triggering frequency of ultrasound imaging to increase myocardial opacification with FSO69 during fundamental and second harmonic imaging. J Am Soc Echocardiogr. 1997;10(6):602–7.

    PubMed  Google Scholar 

  277. Porter TR, Li S, Kricsfeld D, Armbruster RW. Detection of myocardial perfusion in multiple echocardiographic windows with one intravenous injection of microbubbles using transient response second harmonic imaging. J Am Coll Cardiol. 1997;29(4):791–9.

    CAS  PubMed  Google Scholar 

  278. Leischik R, Beller KD, Erbel R. Comparison of a new intravenous echo contrast agent (BY 963) with Albunex for opacification of left ventricular cavity. Basic Res Cardiol. 1996;91(1):101–9.

    CAS  PubMed  Google Scholar 

  279. Marwick TH, Brunken R, Meland N, et al. Accuracy and feasibility of contrast echocardiography for detection of perfusion defects in routine practice: comparison with wall motion and technetium-99m sestamibi single-photon emission computed tomography. The Nycomed NC100100 Investigators. J Am Coll Cardiol. 1998;32(5):1260–9.

    CAS  PubMed  Google Scholar 

  280. Cheirif J, Desir RM, Bolli R, et al. Relation of perfusion defects observed with myocardial contrast echocardiography to the severity of coronary stenosis: correlation with thallium-201 single-photon emission tomography. J Am Coll Cardiol. 1992;19(6):1343–9.

    CAS  PubMed  Google Scholar 

  281. Heinle SK, Noblin J, Goree-Best P, et al. Assessment of myocardial perfusion by harmonic power Doppler imaging at rest and during adenosine stress: comparison with (99m)Tc-sestamibi SPECT imaging. Circulation. 2000;102(1):55–60.

    CAS  PubMed  Google Scholar 

  282. Peltier M, Vancraeynest D, Pasquet A, et al. Assessment of the physiologic significance of coronary disease with dipyridamole real-time myocardial contrast echocardiography. Comparison with technetium-99m sestamibi single-photon emission computed tomography and quantitative coronary angiography. J Am Coll Cardiol. 2004;43(2):257–64.

    PubMed  Google Scholar 

  283. Senior R, Lepper W, Pasquet A, et al. Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc single-photon emission computed tomography. Am Heart J. 2004;147(6):​1100–5.

    PubMed  Google Scholar 

  284. Janardhanan R, Senior R. Accuracy of dipyridamole myocardial contrast echocardiography for the detection of residual stenosis of the infarct-related artery and multivessel disease early after acute myocardial infarction. J Am Coll Cardiol. 2004;43(12):2247–52.

    PubMed  Google Scholar 

  285. Shimoni S, Zoghbi WA, Xie F, et al. Real-time assessment of myocardial perfusion and wall motion during bicycle and treadmill exercise echocardiography: comparison with single photon emission computed tomography. J Am Coll Cardiol. 2001;37(3):741–7.

    CAS  PubMed  Google Scholar 

  286. Tsutsui JM, Elhendy A, Anderson JR, et al. Prognostic value of dobutamine stress myocardial contrast perfusion echocardiography. Circulation. 2005;112(10):1444–50.

    PubMed  Google Scholar 

  287. Senior R, Ashrafian H. Detecting acute coronary syndrome in the emergency department: the answer is in seeing the heart: why look further? Eur Heart J. 2005;26(16):1573–5.

    PubMed  Google Scholar 

  288. Kaul S. Myocardial perfusion and other applications of contrast echocardiography. In: Skorton DJ, Schelbert HR, Wolf GL, et al., editors. Marcus’ cardiac imaging: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders Co; 1996. p. 480.

    Google Scholar 

  289. Zaret BL, Wackers FJ, Terrin ML, et al. Value of radionuclide rest and exercise left ventricular ejection fraction in assessing survival of patients after thrombolytic therapy for acute myocardial infarction: results of Thrombolysis in Myocardial Infarction (TIMI) phase II study. The TIMI Study Group. J Am Coll Cardiol. 1995;26(1):73–9.

    CAS  PubMed  Google Scholar 

  290. American Society of Nuclear Cardiology. Imaging guidelines for nuclear cardiology procedures, part 2. J Nucl Cardiol. 1999;2:G47–84.

    Google Scholar 

  291. Pasquet A, Yamada E, Armstrong G, et al. Influence of dobutamine or exercise stress on the results of pulsed-wave Doppler assessment of myocardial velocity. Am Heart J. 1999;138:​753–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Coulter MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Coulter, S.A. (2015). Echocardiographic Evaluation of Coronary Artery Disease. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics