Skip to main content

Microvascular Disease

  • Chapter
  • First Online:
Renal Vascular Disease

Abstract

A healthy renal microcirculation is crucial to ensure adequate tissue perfusion, filtration and removal of toxins from the general circulation. Emerging evidence supports a role of renal microvascular (MV) disease in possibly determining the turning point between reversible and irreversible renal injury. Indeed, previous studies have shown that renal MV rarefaction correlates with the progressive deterioration of renal hemodynamics, filtration, and, tubular function. Furthermore, dysfunctional or damaged microvessels can compromise adequate renal perfusion and nutrition leading to tissue ischemia, which may in turn activate pro-inflammatory and pro-fibrotic factors that could promote renal parenchymal injury. This chapter will discuss the changes in renal MV function and structure and the role of MV disease on the initiation and progression of renal injury.

Either as a causative mechanism or a consequence of renal injury, increasing experimental and clinical evidence showed that pathological changes in the renal microvasculature accompany the development and progression of renal injury associated to hypertension, diabetes, obesity, and atherosclerosis. Previous studies have shown that systemic and renal MV disease is associated to cardiovascular risk factors even in the absence of major deterioration of renal function, implying that early changes in renal MV function could later serve as instigator of renal injury. Hence, this chapter will also focus on the development, progression, and mechanisms of renal MV disease in hypertension, diabetes, obesity, and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chade AR. Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis. Am J Physiol Regul Integr Comp Physiol. 2011;300:R783–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The renal microcirculation. Comprehensive Physiology. 2011;550–683.

    Google Scholar 

  3. Hall JE. Guyton and Hall textbook of medical physiology. 12th ed. Philadelphia: Elsevier; 2011.

    Google Scholar 

  4. Kang DH, Anderson S, Kim YG, Mazzalli M, Suga S, Jefferson JA, Gordon KL, Oyama TT, Hughes J, Hugo C, Kerjaschki D, Schreiner GF, Johnson RJ. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis. 2001;37:601–11.

    PubMed  CAS  Google Scholar 

  5. Iliescu R, Fernandez SR, Kelsen S, Maric C, Chade AR. Role of renal microcirculation in experimental renovascular disease. Nephrol Dial Transplant. 2010;25:1079–87.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Basile DP. Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens. 2004;13:1–7.

    PubMed  Google Scholar 

  7. Chade AR, Kelsen S. Reversal of renal dysfunction by targeted administration of vegf into the stenotic kidney: a novel potential therapeutic approach. Am J Physiol Renal Physiol. 2012;302:F1342–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Chade AR, Krier JD, Rodriguez-Porcel M, Breen JF, McKusick MA, Lerman A, Lerman LO. Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. Am J Physiol Renal Physiol. 2004;286:F1079–86.

    PubMed  CAS  Google Scholar 

  9. Chade AR, Krier JD, Galili O, Lerman A, Lerman LO. Role of renal cortical neovascularization in experimental hypercholesterolemia. Hypertension. 2007;50:729–36.

    PubMed  CAS  Google Scholar 

  10. Chade AR, Krier JD, Textor SC, Lerman A, Lerman LO. Endothelin-a receptor blockade improves renal microvascular architecture and function in experimental hypercholesterolemia. J Am Soc Nephrol. 2006;17:3394–403.

    PubMed  CAS  Google Scholar 

  11. Chade AR, Lerman A, Lerman LO. Kidney in early atherosclerosis. Hypertension. 2005;45:1042–9.

    PubMed  CAS  Google Scholar 

  12. Chade AR, Mushin OP, Zhu X, Rodriguez-Porcel M, Grande JP, Textor SC, Lerman A, Lerman LO. Pathways of renal fibrosis and modulation of matrix turnover in experimental hypercholesterolemia. Hypertension. 2005;46:772–9.

    PubMed  CAS  Google Scholar 

  13. Maric-Bilkan C, Flynn ER, Chade AR. Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat. Am J Physiol Renal Physiol. 2012;302:F308–15.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Iliescu R, Chade AR. Progressive renal vascular proliferation and injury in obese zucker rats. Microcirculation. 2010;17:250–8.

    PubMed  PubMed Central  Google Scholar 

  15. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, Struijker-Boudier HA. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118:968–76.

    PubMed  Google Scholar 

  16. Urbieta Caceres VH, Syed FA, Lin J, Zhu XY, Jordan KL, Bell CC, Bentley MD, Lerman A, Khosla S, Lerman LO. Age-dependent renal cortical microvascular loss in female mice. Am J Physiol Endocrinol Metab. 2012;302(8):E979–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Pessina AC. Target organs of individuals with diabetes caught between arterial stiffness and damage to the microcirculation. J Hypertens Suppl. 2007;25:S13–8.

    PubMed  CAS  Google Scholar 

  18. Rabelink TJ, Wijewickrama DC, de Koning EJ. Peritubular endothelium: the achilles heel of the kidney? Kidney Int. 2007;72:926–30.

    PubMed  CAS  Google Scholar 

  19. Lindenmeyer MT, Kretzler M, Boucherot A, Berra S, Yasuda Y, Henger A, Eichinger F, Gaiser S, Schmid H, Rastaldi MP, Schrier RW, Schlondorff D, Cohen CD. Interstitial vascular rarefaction and reduced vegf-a expression in human diabetic nephropathy. J Am Soc Nephrol. 2007;18:1765–76.

    PubMed  CAS  Google Scholar 

  20. Mayer G. Capillary rarefaction, hypoxia, vegf and angiogenesis in chronic renal disease. Nephrol Dial Transplant. 2011;26:1132–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, Sutton TA. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol. 2011;300:F721–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Bohle A, Mackensen-Haen S, von Gise H. Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am J Nephrol. 1987;7:421–33.

    PubMed  CAS  Google Scholar 

  23. Chade AR, Zhu X, Lavi R, Krier JD, Pislaru S, Simari RD, Napoli C, Lerman A, Lerman LO. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation. 2009;119:547–57.

    PubMed  PubMed Central  Google Scholar 

  24. Chade AR, Zhu XY, Krier JD, Jordan KL, Textor SC, Grande JP, Lerman A, Lerman LO. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells. 2010;28:1039–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ. Impaired angiogenesis in the remnant kidney model: ii. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol. 2001;12:1448–57.

    PubMed  CAS  Google Scholar 

  26. Bobik A. The structural basis of hypertension: vascular remodelling, rarefaction and angiogenesis/arteriogenesis. J Hypertens. 2005;23:1473–5.

    PubMed  CAS  Google Scholar 

  27. Futrakul N, Butthep P, Laohareungpanya N, Chaisuriya P, Ratanabanangkoon K. A defective angiogenesis in chronic kidney disease. Ren Fail. 2008;30:215–7.

    PubMed  CAS  Google Scholar 

  28. Zoccali C. Endothelial dysfunction in ckd: a new player in town? Nephrol Dial Transplant. 2008;23:783–5.

    PubMed  Google Scholar 

  29. Sila-asna M, Bunyaratvej A, Futrakul P, Futrakul N. Renal microvascular abnormality in chronic kidney disease. Ren Fail. 2006;28:609–10.

    PubMed  Google Scholar 

  30. Paravicini TM, Touyz RM. Nadph oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008;31 Suppl 2:S170–80.

    PubMed  CAS  Google Scholar 

  31. Fliser D. Perspectives in renal disease progression: the endothelium as a treatment target in chronic kidney disease. J Nephrol. 2011;23:369–76.

    Google Scholar 

  32. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15:1983–92.

    PubMed  CAS  Google Scholar 

  33. Chade AR. Renal vascular structure and rarefaction. Compr Physiol. 2012;3(2):817–31.

    Google Scholar 

  34. Giles TD, Sander GE, Nossaman BD, Kadowitz PJ. Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich). 2012;14:198–205.

    CAS  Google Scholar 

  35. Whayne Jr TF. Coronary atherosclerosis, low-density lipoproteins and markers of thrombosis, inflammation and endothelial dysfunction. Int J Angiol. 2007;16:12–6.

    PubMed  PubMed Central  Google Scholar 

  36. Linke A, Recchia F, Zhang X, Hintze TH. Acute and chronic endothelial dysfunction: implications for the development of heart failure. Heart Fail Rev. 2003;8:87–97.

    PubMed  CAS  Google Scholar 

  37. Gokce N, Keaney Jr JF, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, Vita JA. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41:1769–75.

    PubMed  Google Scholar 

  38. Kistorp C, Chong AY, Gustafsson F, Galatius S, Raymond I, Faber J, Lip GY, Hildebrandt P. Biomarkers of endothelial dysfunction are elevated and related to prognosis in chronic heart failure patients with diabetes but not in those without diabetes. Eur J Heart Fail. 2008;10:380–7.

    PubMed  CAS  Google Scholar 

  39. Stenvinkel P. Interactions between inflammation, oxidative stress, and endothelial dysfunction in end-stage renal disease. J Ren Nutr. 2003;13:144–8.

    PubMed  Google Scholar 

  40. Aue G, Nelson Lozier J, Tian X, Cullinane AM, Soto S, Samsel L, McCoy P, Wiestner A. Inflammation, tnfalpha and endothelial dysfunction link lenalidomide to venous thrombosis in chronic lymphocytic leukemia. Am J Hematol. 2011;86:835–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Mazzoccoli G, Fontana A, Grilli M, Dagostino MP, Copetti M, Pellegrini F, Vendemiale G. Idiopathic deep venous thrombosis and arterial endothelial dysfunction in the elderly. Age (Dordr). 2012;34:751–60.

    CAS  Google Scholar 

  42. Mazzoccoli G, Grilli M, Ferrandino F, Copetti M, Fontana A, Pellegrini F, Dagostino MP, De Cata A, Vendemiale G. Arterial endothelial dysfunction and idiopathic deep venous thrombosis. J Biol Regul Homeost Agents. 2011;25:565–73.

    PubMed  CAS  Google Scholar 

  43. Poredos P, Jezovnik MK. In patients with idiopathic venous thrombosis, interleukin-10 is decreased and related to endothelial dysfunction. Heart Vessels. 2011;26:596–602.

    PubMed  Google Scholar 

  44. Wang D, Iversen J, Wilcox CS, Strandgaard S. Endothelial dysfunction and reduced nitric oxide in resistance arteries in autosomal-dominant polycystic kidney disease. Kidney Int. 2003;64:1381–8.

    PubMed  CAS  Google Scholar 

  45. Vaziri ND, Ni Z, Oveisi F, Liang K, Pandian R. Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency. Hypertension. 2002;39:135–41.

    PubMed  CAS  Google Scholar 

  46. Kelsen S, Hall JE, Chade AR. Endothelin-a receptor blockade slows the progression of renal injury in experimental renovascular disease. Am J Physiol Renal Physiol. 2011;301:F218–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Chade AR, Rodriguez-Porcel M, Grande JP, Krier JD, Lerman A, Romero JC, Napoli C, Lerman LO. Distinct renal injury in early atherosclerosis and renovascular disease. Circulation. 2002;106:1165–71.

    PubMed  Google Scholar 

  48. Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33:998–1001.

    PubMed  CAS  Google Scholar 

  49. Cambonie G, Comte B, Yzydorczyk C, Ntimbane T, Germain N, Le NL, Pladys P, Gauthier C, Lahaie I, Abran D, Lavoie JC, Nuyt AM. Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1236–45.

    PubMed  CAS  Google Scholar 

  50. Chade AR, Rodriguez-Porcel M, Rippentrop SJ, Lerman A, Lerman LO. Angiotensin ii at1 receptor blockade improves renal perfusion in hypercholesterolemia. Am J Hypertens. 2003;16:111–5.

    PubMed  CAS  Google Scholar 

  51. Chade AR, Zhu X, Mushin OP, Napoli C, Lerman A, Lerman LO. Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia. FASEB J. 2006;20:1706–8.

    PubMed  CAS  Google Scholar 

  52. Chade AR, Zhu XY, Grande JP, Krier JD, Lerman A, Lerman LO. Simvastatin abates development of renal fibrosis in experimental renovascular disease. J Hypertens. 2008;26:1651–60.

    PubMed  CAS  Google Scholar 

  53. Chen JW, Hsu NW, Wu TC, Lin SJ, Chang MS. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome x. Am J Cardiol. 2002;90:974–82.

    PubMed  CAS  Google Scholar 

  54. Galle J, Quaschning T, Seibold S, Wanner C. Endothelial dysfunction and inflammation: what is the link? Kidney Int Suppl. 2003;63:S45–9.

    Google Scholar 

  55. Stenvinkel P. Endothelial dysfunction and inflammation-is there a link? Nephrol Dial Transplant. 2001;16:1968–71.

    PubMed  CAS  Google Scholar 

  56. Biegelsen ES, Loscalzo J. Endothelial function and atherosclerosis. Coron Artery Dis. 1999;10:241–56.

    PubMed  CAS  Google Scholar 

  57. Leopold JA, Loscalzo J. Clinical importance of understanding vascular biology. Cardiol Rev. 2000;8:115–23.

    PubMed  CAS  Google Scholar 

  58. Peirce SM, Skalak TC. Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation. 2003;10:99–111.

    PubMed  Google Scholar 

  59. VanBavel E, Bakker EN, Pistea A, Sorop O, Spaan JA. Mechanics of microvascular remodeling. Clin Hemorheol Microcirc. 2006;34:35–41.

    PubMed  Google Scholar 

  60. Bakker EN, Buus CL, Spaan JA, Perree J, Ganga A, Rolf TM, Sorop O, Bramsen LH, Mulvany MJ, Vanbavel E. Small artery remodeling depends on tissue-type transglutaminase. Circ Res. 2005;96:119–26.

    PubMed  CAS  Google Scholar 

  61. Grande JP. Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med. 1997;214:27–40.

    PubMed  CAS  Google Scholar 

  62. Baricos WH, Cortez SL, Deboisblanc M, Xin S. Transforming growth factor-beta is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. J Am Soc Nephrol. 1999;10:790–5.

    PubMed  CAS  Google Scholar 

  63. McLennan SV, Kelly DJ, Schache M, Waltham M, Dy V, Langham RG, Yue DK, Gilbert RE. Advanced glycation end products decrease mesangial cell mmp-7: a role in matrix accumulation in diabetic nephropathy? Kidney Int. 2007;72:481–8.

    PubMed  CAS  Google Scholar 

  64. Rysz J, Banach M, Stolarek RA, Pasnik J, Cialkowska-Rysz A, Koktysz R, Piechota M, Baj Z. Serum matrix metalloproteinases mmp-2 and mmp-9 and metalloproteinase tissue inhibitors timp-1 and timp-2 in diabetic nephropathy. J Nephrol. 2007;20:444–52.

    PubMed  CAS  Google Scholar 

  65. Wang R, Xu YJ, Liu XS, Zeng DX, Xiang M. Knockdown of connective tissue growth factor by plasmid-based short hairpin rna prevented pulmonary vascular remodeling in cigarette smoke-exposed rats. Arch Biochem Biophys. 2011;508:93–100.

    PubMed  CAS  Google Scholar 

  66. Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by camp. FASEB J. 1999;13:1774–86.

    PubMed  CAS  Google Scholar 

  67. Qi W, Chen X, Poronnik P, Pollock CA. Transforming growth factor-beta/connective tissue growth factor axis in the kidney. Int J Biochem Cell Biol. 2008;40:9–13.

    PubMed  CAS  Google Scholar 

  68. Qi W, Twigg S, Chen X, Polhill TS, Poronnik P, Gilbert RE, Pollock CA. Integrated actions of transforming growth factor-beta1 and connective tissue growth factor in renal fibrosis. Am J Physiol Renal Physiol. 2005;288:F800–9.

    PubMed  CAS  Google Scholar 

  69. Inoue T, Okada H, Kobayashi T, Watanabe Y, Kanno Y, Kopp JB, Nishida T, Takigawa M, Ueno M, Nakamura T, Suzuki H. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice. FASEB J. 2003;17:268–70.

    PubMed  CAS  Google Scholar 

  70. Caron A, Desrosiers RR, Langlois S, Beliveau R. Ischemia-reperfusion injury stimulates gelatinase expression and activity in kidney glomeruli. Can J Physiol Pharmacol. 2005;83:287–300.

    PubMed  CAS  Google Scholar 

  71. Graff J, Harder S, Wahl O, Scheuermann EH, Gossmann J. Anti-inflammatory effects of clopidogrel intake in renal transplant patients: effects on platelet-leukocyte interactions, platelet cd40 ligand expression, and proinflammatory biomarkers. Clin Pharmacol Ther. 2005;78:468–76.

    PubMed  CAS  Google Scholar 

  72. Kalousova M, Hodkova M, Dusilova-Sulkova S, Uhrova J, Tesar V, Zima T. Effect of hemodiafiltration on pregnancy-associated plasma protein a (papp-a) and related parameters. Ren Fail. 2006;28:715–21.

    PubMed  CAS  Google Scholar 

  73. Desrosiers RR, Rivard ME, Grundy PE, Annabi B. Decrease in ldl receptor-related protein expression and function correlates with advanced stages of wilms tumors. Pediatr Blood Cancer. 2006;46:40–9.

    PubMed  Google Scholar 

  74. McLennan SV, Wang XY, Moreno V, Yue DK, Twigg SM. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology. 2004;145:5646–55.

    PubMed  CAS  Google Scholar 

  75. Kang DH, Kanellis J, Hugo C, Truong L, Anderson S, Kerjaschki D, Schreiner GF, Johnson RJ. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol. 2002;13:806–16.

    PubMed  Google Scholar 

  76. Zhu XY, Rodriguez-Porcel M, Bentley MD, Chade AR, Sica V, Napoli C, Caplice N, Ritman EL, Lerman A, Lerman LO. Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation. 2004;109:2109–15.

    PubMed  CAS  Google Scholar 

  77. Davis GE, Senger DR. Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol. 2008;15:197–203.

    PubMed  CAS  Google Scholar 

  78. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–33.

    PubMed  Google Scholar 

  79. Prewitt RL, Chen II, Dowell R. Development of microvascular rarefaction in the spontaneously hypertensive rat. Am J Physiol. 1982;243:H243–51.

    PubMed  CAS  Google Scholar 

  80. Lee LK, Meyer TW, Pollock AS, Lovett DH. Endothelial cell injury initiates glomerular sclerosis in the rat remnant kidney. J Clin Invest. 1995;96:953–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Eirin A, Zhu XY, Urbieta-Caceres VH, Grande JP, Lerman A, Textor SC, Lerman LO. Persistent kidney dysfunction in swine renal artery stenosis correlates with outer cortical microvascular remodeling. Am J Physiol Renal Physiol. 2011;300:F1394–401.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Korn C, Augustin HG. Born to die: blood vessel regression research coming of age. Circulation. 2012;125:3063–5.

    PubMed  Google Scholar 

  83. Wacker A, Gerhardt H. Endothelial development taking shape. Curr Opin Cell Biol. 2011;23:676–85.

    PubMed  CAS  Google Scholar 

  84. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193:1005–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG, Rafii S. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of sdf-1, vegf, and angiopoietin-1. Ann N Y Acad Sci. 2001;938:36–45; discussion 45–7.

    PubMed  CAS  Google Scholar 

  86. Rudnicki M, Perco P, Enrich J, Eder S, Heininger D, Bernthaler A, Wiesinger M, Sarkozi R, Noppert SJ, Schramek H, Mayer B, Oberbauer R, Mayer G. Hypoxia response and vegf-a expression in human proximal tubular epithelial cells in stable and progressive renal disease. Lab Invest. 2009;89:337–46.

    PubMed  CAS  Google Scholar 

  87. Nakagawa T, Lan HY, Zhu HJ, Kang DH, Schreiner GF, Johnson RJ. Differential regulation of vegf by tgf-beta and hypoxia in rat proximal tubular cells. Am J Physiol Renal Physiol. 2004;287:F658–64.

    PubMed  CAS  Google Scholar 

  88. Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH. Chronic hypoxia attenuates vegf signaling and angiogenic responses by downregulation of kdr in human endothelial cells. Am J Physiol Cell Physiol. 2009;296:C1162–70.

    PubMed  CAS  Google Scholar 

  89. Gomez SI, Warner L, Haas JA, Bolterman RJ, Textor SC, Lerman LO, Romero JC. Increased hypoxia and reduced renal tubular response to furosemide detected by bold magnetic resonance imaging in swine renovascular hypertension. Am J Physiol Renal Physiol. 2009;297:F981–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Warner L, Glockner JF, Woollard J, Textor SC, Romero JC, Lerman LO. Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics. Invest Radiol. 2011;46:41–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Zhu XY, Chade AR, Rodriguez-Porcel M, Bentley MD, Ritman EL, Lerman A, Lerman LO. Cortical microvascular remodeling in the stenotic kidney: role of increased oxidative stress. Arterioscler Thromb Vasc Biol. 2004;24:1854–9.

    PubMed  CAS  Google Scholar 

  92. Takahashi S, Shinya T, Sugiyama A. Angiostatin inhibition of vascular endothelial growth factor-stimulated nitric oxide production in endothelial cells. J Pharmacol Sci. 2010;112:432–7.

    PubMed  CAS  Google Scholar 

  93. Zhu M, Bi X, Jia Q, Shangguan S. The possible mechanism for impaired angiogenesis after transient focal ischemia in type 2 diabetic gk rats: different expressions of angiostatin and vascular endothelial growth factor. Biomed Pharmacother. 2010;64:208–13.

    PubMed  CAS  Google Scholar 

  94. Maeshima Y, Makino H. Angiogenesis and chronic kidney disease. Fibrogenesis Tissue Repair. 2010;3:13.

    PubMed  PubMed Central  Google Scholar 

  95. Basile DP, Fredrich K, Weihrauch D, Hattan N, Chilian WM. Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. Am J Physiol Renal Physiol. 2004;286:F893–902.

    PubMed  CAS  Google Scholar 

  96. Watorek E, Paprocka M, Dus D, Kopec W, Klinger M. Endostatin and vascular endothelial growth factor: potential regulators of endothelial progenitor cell number in chronic kidney disease. Pol Arch Med Wewn. 2011;121:296–301.

    PubMed  CAS  Google Scholar 

  97. Ichinose K, Maeshima Y, Yamamoto Y, Kitayama H, Takazawa Y, Hirokoshi K, Sugiyama H, Yamasaki Y, Eguchi K, Makino H. Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes. 2005;54:2891–903.

    PubMed  CAS  Google Scholar 

  98. Karihaloo A, Karumanchi SA, Barasch J, Jha V, Nickel CH, Yang J, Grisaru S, Bush KT, Nigam S, Rosenblum ND, Sukhatme VP, Cantley LG. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci U S A. 2001;98:12509–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Maciel TT, Coutinho EL, Soares D, Achar E, Schor N, Bellini MH. Endostatin, an antiangiogenic protein, is expressed in the unilateral ureteral obstruction mice model. J Nephrol. 2008;21:753–60.

    PubMed  CAS  Google Scholar 

  100. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, Harper SJ. Vegf165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 2002;62:4123–31.

    PubMed  CAS  Google Scholar 

  101. Hugo C, Daniel C. Thrombospondin in renal disease. Nephron Exp Nephrol. 2009;111:e61–6.

    PubMed  CAS  Google Scholar 

  102. Chade AR, Rodriguez-Porcel M, Grande JP, Zhu X, Sica V, Napoli C, Sawamura T, Textor SC, Lerman A, Lerman LO. Mechanisms of renal structural alterations in combined hypercholesterolemia and renal artery stenosis. Arterioscler Thromb Vasc Biol. 2003;23:1295–301.

    PubMed  CAS  Google Scholar 

  103. Fujii H, Takiuchi S, Kawano Y, Fukagawa M. Putative role of asymmetric dimethylarginine in microvascular disease of kidney and heart in hypertensive patients. Am J Hypertens. 2008;21:650–6.

    PubMed  CAS  Google Scholar 

  104. Marcovecchio ML, Chiarelli F. Microvascular disease in children and adolescents with type 1 diabetes and obesity. Pediatr Nephrol. 2011;26:365–75.

    PubMed  Google Scholar 

  105. Feihl F, Liaudet L, Waeber B. The macrocirculation and microcirculation of hypertension. Curr Hypertens Rep. 2009;11:182–9.

    PubMed  Google Scholar 

  106. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley Jr AW. Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol. 1989;256:H126–31.

    PubMed  CAS  Google Scholar 

  107. Cowley Jr AW, Roman RJ, Krieger JE. Pathways linking renal excretion and arterial pressure with vascular structure and function. Clin Exp Pharmacol Physiol. 1991;18:21–7.

    PubMed  Google Scholar 

  108. Brecker CG, Shustak SR. Contractile proteins in endothelial cells: comparison of cerebral capillaries with those in heart and skeletal muscle and with liver sinusoids. Circulation. 1972;45/46(Suppl II):87.

    Google Scholar 

  109. Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2003;284:R893–912.

    PubMed  CAS  Google Scholar 

  110. Romero JC, Reckelhoff JF. State-of-the-art lecture. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 1999;34:943–9.

    PubMed  CAS  Google Scholar 

  111. Romero JC, Reckelhoff JF. Oxidative stress may explain how hypertension is maintained by normal levels of angiotensin ii. Braz J Med Biol Res. 2000;33:653–60.

    PubMed  CAS  Google Scholar 

  112. Chatziantoniou C, Boffa JJ, Tharaux PL, Flamant M, Ronco P, Dussaule JC. Progression and regression in renal vascular and glomerular fibrosis. Int J Exp Pathol. 2004;85:1–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Battegay EJ, de Miguel LS, Petrimpol M, Humar R. Effects of anti-hypertensive drugs on vessel rarefaction. Curr Opin Pharmacol. 2007;7:151–7.

    PubMed  CAS  Google Scholar 

  114. Josifova T, Schneider U, Henrich PB, Schrader W. Eye disorders in diabetes: potential drug targets. Infect Disord Drug Targets. 2008;8:70–5.

    PubMed  CAS  Google Scholar 

  115. Marin P, Andersson B, Krotkiewski M, Bjorntorp P. Muscle fiber composition and capillary density in women and men with niddm. Diabetes Care. 1994;17:382–6.

    PubMed  CAS  Google Scholar 

  116. Futrakul N, Futrakul P. Renal microvascular disease predicts renal function in diabetes. Ren Fail. 2012;34:126–9.

    PubMed  CAS  Google Scholar 

  117. Gomes MB, Affonso FS, Cailleaux S, Almeida AL, Pinto LF, Tibirica E. Glucose levels observed in daily clinical practice induce endothelial dysfunction in the rabbit macro- and microcirculation. Fundam Clin Pharmacol. 2004;18:339–46.

    PubMed  CAS  Google Scholar 

  118. Ko SH, Cao W, Liu Z. Hypertension management and microvascular insulin resistance in diabetes. Curr Hypertens Rep. 2011;12:243–51.

    Google Scholar 

  119. Raptis AE, Viberti G. Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S424–37.

    PubMed  CAS  Google Scholar 

  120. O’Donovan HC, Hickey F, Brazil DP, Kavanagh DH, Oliver N, Martin F, Godson C, Crean J. Connective tissue growth factor antagonizes transforming growth factor-beta1/smad signalling in renal mesangial cells. Biochem J. 2012;441:499–510.

    PubMed  Google Scholar 

  121. Lupia E, Elliot SJ, Lenz O, Zheng F, Hattori M, Striker GE, Striker LJ. Igf-1 decreases collagen degradation in diabetic nod mesangial cells: implications for diabetic nephropathy. Diabetes. 1999;48:1638–44.

    PubMed  CAS  Google Scholar 

  122. Zhang J, Zhang X, Li H, Cui X, Guan X, Tang K, Jin C, Cheng M. Hyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actions. Diab Vasc Dis Res. 2013;10(1):49–56.

    PubMed  CAS  Google Scholar 

  123. Biscetti F, Pitocco D, Straface G, Zaccardi F, de Cristofaro R, Rizzo P, Lancellotti S, Arena V, Stigliano E, Musella T, Ghirlanda G, Flex A. Glycaemic variability affects ischaemia-induced angiogenesis in diabetic mice. Clin Sci (Lond). 2011;121:555–64.

    CAS  Google Scholar 

  124. Nakagawa T. Uncoupling of the vegf-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of vegf in renal disease. Am J Physiol Renal Physiol. 2007;292:F1665–72.

    PubMed  CAS  Google Scholar 

  125. Siervo M, Tomatis V, Stephan BC, Feelisch M, Bluck LJ. Vegf is indirectly associated with no production and acutely increases in response to hyperglycaemia(1). Eur J Clin Invest. 2012;42:967–73.

    PubMed  CAS  Google Scholar 

  126. Hohenstein B, Hausknecht B, Boehmer K, Riess R, Brekken RA, Hugo CP. Local vegf activity but not vegf expression is tightly regulated during diabetic nephropathy in man. Kidney Int. 2006;69:1654–61.

    PubMed  CAS  Google Scholar 

  127. Futrakul N, Futrakul P. Vascular homeostasis and angiogenesis determine therapeutic effectiveness in type 2 diabetes. Int J Vasc Med. 2011;2011:971524.

    PubMed  PubMed Central  Google Scholar 

  128. O’Hare AM, Glidden DV, Fox CS, Hsu CY. High prevalence of peripheral arterial disease in persons with renal insufficiency: results from the national health and nutrition examination survey 1999–2000. Circulation. 2004;109:320–3.

    PubMed  Google Scholar 

  129. Bax L, van der Graaf Y, Rabelink AJ, Algra A, Beutler JJ, Mali WP. Influence of atherosclerosis on age-related changes in renal size and function. Eur J Clin Invest. 2003;33:34–40.

    PubMed  CAS  Google Scholar 

  130. Safian RD, Textor SC. Renal-artery stenosis. N Engl J Med. 2001;344:431–42.

    PubMed  CAS  Google Scholar 

  131. Dworkin LD, Murphy T. Is there any reason to stent atherosclerotic renal artery stenosis? Am J Kidney Dis. 2010;56:259–63.

    PubMed  Google Scholar 

  132. Kalra PA, Guo H, Kausz AT, Gilbertson DT, Liu J, Chen SC, Ishani A, Collins AJ, Foley RN. Atherosclerotic renovascular disease in united states patients aged 67 years or older: risk factors, revascularization, and prognosis. Kidney Int. 2005;68:293–301.

    PubMed  Google Scholar 

  133. Hansen KJ, Edwards MS, Craven TE, Cherr GS, Jackson SA, Appel RG, Burke GL, Dean RH. Prevalence of renovascular disease in the elderly: a population-based study. J Vasc Surg. 2002;36:443–51.

    PubMed  Google Scholar 

  134. Lerman LO, Taler SJ, Textor SC, Sheedy 2nd PF, Stanson AW, Romero JC. Computed tomography-derived intrarenal blood flow in renovascular and essential hypertension. Kidney Int. 1996;49:846–54.

    PubMed  CAS  Google Scholar 

  135. Textor SC, Wilcox CS. Renal artery stenosis: a common, treatable cause of renal failure? Annu Rev Med. 2001;52:421–42.

    PubMed  CAS  Google Scholar 

  136. Textor SC. Ischemic nephropathy: where are we now? J Am Soc Nephrol. 2004;15:1974–82.

    PubMed  CAS  Google Scholar 

  137. Chade AR, Best PJ, Rodriguez-Porcel M, Herrmann J, Zhu X, Sawamura T, Napoli C, Lerman A, Lerman LO. Endothelin-1 receptor blockade prevents renal injury in experimental hypercholesterolemia. Kidney Int. 2003;64:962–9.

    PubMed  CAS  Google Scholar 

  138. Chade AR, Rodriguez-Porcel M, Herrmann J, Zhu X, Grande JP, Napoli C, Lerman A, Lerman LO. Antioxidant intervention blunts renal injury in experimental renovascular disease. J Am Soc Nephrol. 2004;15:958–66.

    PubMed  CAS  Google Scholar 

  139. Chavakis E, Dernbach E, Hermann C, Mondorf UF, Zeiher AM, Dimmeler S. Oxidized ldl inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the akt/endothelial nitric oxide synthase pathway. Circulation. 2001;103:2102–7.

    PubMed  CAS  Google Scholar 

  140. Baskin ML, Ard J, Franklin F, Allison DB. Prevalence of obesity in the united states. Obes Rev. 2005;6:5–7.

    PubMed  CAS  Google Scholar 

  141. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among us children, adolescents, and adults, 1999–2002. JAMA. 2004;291:2847–50.

    PubMed  CAS  Google Scholar 

  142. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003;11:1278–89.

    PubMed  CAS  Google Scholar 

  143. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58:718–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. de Jongh RT, Serne EH, IJ RG, de Vries G, Stehouwer CD. Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation. 2004;109:2529–35.

    PubMed  Google Scholar 

  145. Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, Sayre J, Dahlbom M, Licinio J, Schelbert HR. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47:1188–95.

    PubMed  CAS  Google Scholar 

  146. Hall JE, Kuo JJ, da Silva AA, de Paula RB, Liu J, Tallam L. Obesity-associated hypertension and kidney disease. Curr Opin Nephrol Hypertens. 2003;12:195–200.

    PubMed  CAS  Google Scholar 

  147. Warncke J, David S, Kumpers P, Opherk JP, Haller H, Fliser D. A hibernating kidney – ischemic preconditioning in a renal transplant recipient with a proximal stenosis of the iliac artery. Clin Nephrol. 2008;70:168–71.

    PubMed  CAS  Google Scholar 

  148. Cheung CM, Chrysochou C, Shurrab AE, Buckley DL, Cowie A, Kalra PA. Effects of renal volume and single-kidney glomerular filtration rate on renal functional outcome in atherosclerotic renal artery stenosis. Nephrol Dial Transplant. 2010;25:1133–40.

    PubMed  Google Scholar 

Download references

Sources of funding: Supported by grant HL095638 from the National Institute of Health.

Disclosures: None. There are no conflicts of interest to disclose by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro R. Chade MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Chade, A.R. (2014). Microvascular Disease. In: Lerman, L., Textor, S. (eds) Renal Vascular Disease. Springer, London. https://doi.org/10.1007/978-1-4471-2810-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2810-6_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2809-0

  • Online ISBN: 978-1-4471-2810-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics