Skip to main content

Calcitonin: Its Physiological Role and Emerging Therapeutics

  • Chapter
  • First Online:
Bone-Metabolic Functions and Modulators

Part of the book series: Topics in Bone Biology ((TBB,volume 7))

  • 1125 Accesses

Abstract

Calcitonin was discovered more than 40 years ago as a hormone that lowers circulating calcium levels [14, 15]. In mammals, the major site of calcitonin synthesis is the parafollicular cells of the thyroid, which secrete calcitonin in response to an increase in plasma calcium concentration and in response to a number of gut hormones, including gastrin and glucagon. Calcitonin is metabolized in the kidneys and has a plasma half-life of approximately 5 min. Calcitonin has been identified in many species, and salmon calcitonin, which shares only 50% sequence identity with human calcitonin, shows much greater potency than human calcitonin in most biological assays [31]. Human calcitonin is a 32-amino-acid peptide with a disulfide bridge between the cysteine residues at positions 1 and 7 and a proline-amide group at the C-terminus [6]. Both the bridge and the amide group along with the full amino acid sequence are necessary for calcitonin’s biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam AS, Bax CM, Shankar VS, Bax BE, Bevis PJ, Huang CL, Moonga BS, Pazianas M, Zaidi M. Further studies on the mode of action of calcitonin on isolated rat osteoclasts: pharmacological evidence for a second site mediating intracellular Ca2+ mobilization and cell retraction. J Endocrinol. 1993;136:7–15.

    Article  PubMed  CAS  Google Scholar 

  2. Bagger YZ, Tanko LB, Alexandersen P, Karsdal MA, Olson M, Mindeholm L, Azria M, Christiansen C. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis. Bone. 2005;37:425–30.

    Article  PubMed  CAS  Google Scholar 

  3. Behets C, Williams JM, Chappard D, Devogelaer JP, Manicourt DH. Effects of calcitonin on subchondral trabecular bone changes and on osteoarthritic cartilage lesions after acute anterior cruciate ligament deficiency. J Bone Miner Res. 2004;19:1821–6.

    Article  PubMed  CAS  Google Scholar 

  4. Binstock ML, Mundy GR. Effect of calcitonin and glutocorticoids in combination on the hypercalcemia of malignancy. Ann Intern Med. 1980;93:269–72.

    PubMed  CAS  Google Scholar 

  5. Bouschet T, Martin S, Henley JM. Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. J Cell Sci. 2005;118:4709–20.

    Article  PubMed  CAS  Google Scholar 

  6. Breimer LH, MacIntyre I, Zaidi M. Peptides from the calcitonin genes: molecular genetics, structure and function. Biochem J. 1988;255:377–90.

    PubMed  CAS  Google Scholar 

  7. Chambers TJ, Magnus CJ. Calcitonin alters behaviour of isolated osteoclasts. J Pathol. 1982;136:27–39.

    Article  PubMed  CAS  Google Scholar 

  8. Chang CP, Pearse 2nd RV, O’Connell S, Rosenfeld MG. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron. 1993;11:1187–95.

    Article  PubMed  CAS  Google Scholar 

  9. Chesnut 3rd CH, Azria M, Silverman S, Engelhardt M, Olson M, Mindeholm L. Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos Int. 2008;19:479–91.

    Article  PubMed  Google Scholar 

  10. Chesnut 3rd CH, Majumdar S, Newitt DC, Shields A, Van Pelt J, Laschansky E, Azria M, Kriegman A, Olson M, Eriksen EF, Mindeholm L. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res. 2005;20:1548–61.

    Article  PubMed  CAS  Google Scholar 

  11. Chesnut 3rd CH, Silverman S, Andriano K, Genant H, Gimona A, Harris S, Kiel D, LeBoff M, Maricic M, Miller P, Moniz C, Peacock M, Richardson P, Watts N, Baylink D. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF study group. Am J Med. 2000;109:267–76.

    Article  PubMed  CAS  Google Scholar 

  12. Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM. Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem. 2003;278:3293–7.

    Article  PubMed  CAS  Google Scholar 

  13. Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol. 1999;56:235–42.

    PubMed  CAS  Google Scholar 

  14. Copp DH, Cheney B. Calcitonin-a hormone from the parathyroid which lowers the calcium-level of the blood. Nature. 1962;193:381–2.

    Article  PubMed  CAS  Google Scholar 

  15. Copp DH, Cameron EC, Cheney BA, Davidson AG, Henze KG. Evidence for calcitonin – a new hormone from the parathyroid that lowers blood calcium. Endocrinology. 1962;70:638–49.

    Article  PubMed  CAS  Google Scholar 

  16. Cornish J, Reid IR. Skeletal effects of amylin and related peptides. Endocrinologist. 1999;9:183–9.

    Article  Google Scholar 

  17. Cornish J, Callon KE, Cooper GJ, Reid IR. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun. 1995;207:133–9.

    Article  PubMed  CAS  Google Scholar 

  18. Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJ, Reid IR. Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone. 2001;29:162–8.

    Article  PubMed  CAS  Google Scholar 

  19. Cornish J, Callon KE, Coy DH, Jiang NY, Xiao L, Cooper GJ, Reid IR. Adrenomedullin is a potent stimulator of osteoblastic activity in vitro and in vivo. Am J Physiol. 1997;273:E1113–20.

    PubMed  CAS  Google Scholar 

  20. Cornish J, Callon KE, Lin CQ, Xiao CL, Gamble GD, Cooper GJ, Reid IR. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts. J Bone Miner Res. 1999;14:1302–9.

    Article  PubMed  CAS  Google Scholar 

  21. Cummings SR, Chapurlat RD. What PROOF proves about calcitonin and clinical trials. Am J Med. 2000;109:330–1.

    Article  PubMed  CAS  Google Scholar 

  22. Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol. 2004;164:509–14.

    Article  PubMed  CAS  Google Scholar 

  23. Davey RA, Turner AG, McManus JF, Chiu WS, Tjahyono F, Moore AJ, Atkins GJ, Anderson PH, Ma C, Glatt V, MacLean HE, Vincent C, Bouxsein M, Morris HA, Findlay DM, Zajac JD. Calcitonin ­receptor plays a physiological role to protect against hypercalcemia in mice. J Bone Miner Res. 2008;23:1182–93.

    Article  PubMed  CAS  Google Scholar 

  24. Farley JR, Tarbaux NM, Hall SL, Linkhart TA, Baylink DJ. The anti-bone-resorptive agent calcitonin also acts in vitro to directly increase bone formation and bone cell proliferation. Endocrinology. 1988;123:159–67.

    Article  PubMed  CAS  Google Scholar 

  25. Gooi JH, Pompolo S, Karsdal MA, Kulkarni NH, Kalajzic I, McAhren SH, Han B, Onyia JE, Ho PW, Gillespie MT, Walsh NC, Chia LY, Quinn JM, Martin TJ, Sims NA. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone. 2010;46:1486–97.

    Article  PubMed  CAS  Google Scholar 

  26. Granholm S, Lundberg P, Lerner UH. Expression of the calcitonin receptor, calcitonin receptor-like receptor, and receptor activity modifying proteins during osteoclast differentiation. J Cell Biochem. 2008;104:920–33.

    Article  PubMed  CAS  Google Scholar 

  27. Harper C, Toverud SU. Ability of thyrocalcitonin to protect against hypercalcemia in adult rats. Endocrinology. 1973;93:1354–9.

    Article  PubMed  CAS  Google Scholar 

  28. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, le Duong T. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 2004;50:1193–206.

    Article  PubMed  CAS  Google Scholar 

  29. Hirsch PF, Baruch H. Is calcitonin an important physiological substance? Endocr J. 2003;21:201–8.

    Article  CAS  Google Scholar 

  30. Hoff AO, Catala-Lehnen P, Thomas PM, Priemel M, Rueger JM, Nasonkin I, Bradley A, Hughes MR, Ordonez N, Cote GJ, Amling M, Gagel RF. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest. 2002;110:1849–57.

    PubMed  CAS  Google Scholar 

  31. Houssami S, Findlay DM, Brady CL, Martin TJ, Epand RM, Moore EE, Murayama E, Tamura T, Orlowski RC, Sexton PM. Divergent structural requirements exist for calcitonin receptor binding specificity and adenylate cyclase activation. Mol Pharmacol. 1995;47:798–809.

    PubMed  CAS  Google Scholar 

  32. Huebner AK, Schinke T, Priemel M, Schilling S, Schilling AF, Emeson RB, Rueger JM, Amling M. Calcitonin deficiency in mice progressively results in high bone turnover. J Bone Miner Res. 2006;21:1924–34.

    Article  PubMed  CAS  Google Scholar 

  33. Huebner AK, Keller J, Catala-Lehnen P, Perkovic S, Streichert T, Emeson RB, Amling M, Schinke T. The role of calcitonin and alpha-calcitonin gene-related peptide in bone formation. Arch Biochem Biophys. 2008;473:210–7.

    Article  PubMed  CAS  Google Scholar 

  34. Jiang Y, Zhao J, Geusens P, Liao EY, Adriaensens P, Gelan J, Azria M, Boonen S, Caulin F, Lynch JA, Ouyang X, Genant HK. Femoral neck trabecular microstructure in ovariectomized ewes treated with calcitonin: MRI microscopic evaluation. J Bone Miner Res. 2005;20:125–30.

    Article  PubMed  Google Scholar 

  35. Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C. Optimizing bioavailability of oral administration of small peptides through pharmacokinetic and pharmacodynamic parameters: the effect of water and timing of meal intake on oral delivery of Salmon calcitonin. BMC Clin Pharmacol. 2008;8:5.

    Article  PubMed  Google Scholar 

  36. Karsdal MA, Henriksen K, Bay-Jensen AC, Molloy B, Arnold M, John MR, Byrjalsen I, Azria M, Riis BJ, Qvist P, Christiansen C. Lessons learned from the development of oral calcitonin: the first tablet formulation of a protein in phase III clinical trials. J Clin Pharmacol. 2010. doi:10.1177/0091270010372625.

  37. Keller JH, Huebner AK, Catala-Lehnen P, Schinke T, Amling M. High bone mass due to increased bone formation in mice lacking the calcitonin receptor. J Bone Miner Res. 2008;23S:S171.

    Google Scholar 

  38. Langston AL, Ralston SH. Management of Paget’s disease of bone. Rheumatology (Oxford). 2004;43:955–9.

    Article  CAS  Google Scholar 

  39. Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski Jr LF, Yamin M, Lodish HF, Goldring SR. Expression cloning and characterization of a porcine renal calcitonin receptor. Trans Assoc Am Physicians. 1991;104:265–72.

    PubMed  CAS  Google Scholar 

  40. Lin Z, Pavlos NJ, Cake MA, Wood DJ, Xu J, Zheng MH. Evidence that human cartilage and chondrocytes do not express calcitonin receptor. Osteoarthritis Cartilage. 2008;16:450–7.

    Article  PubMed  CAS  Google Scholar 

  41. MacIntyre I. Amylinamide, bone conservation, and pancreatic beta cells. Lancet. 1989;2:1026–7.

    Article  PubMed  CAS  Google Scholar 

  42. Mancini L, Paul-Clark MJ, Rosignoli G, Hannon R, Martin JE, Macintyre I, Perretti M. Calcitonin and prednisolone display antagonistic actions on bone and have synergistic effects in experimental arthritis. Am J Pathol. 2007;170:1018–27.

    Article  PubMed  CAS  Google Scholar 

  43. Manicourt DH, Azria M, Mindeholm L, Thonar EJ, Devogelaer JP. Oral salmon calcitonin reduces Lequesne’s algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum. 2006;54:3205–11.

    Article  PubMed  CAS  Google Scholar 

  44. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76–81.

    Article  PubMed  CAS  Google Scholar 

  45. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393:333–9.

    Article  PubMed  CAS  Google Scholar 

  46. Muff R, Buhlmann N, Fischer JA, Born W. An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology. 1999;140:2924–7.

    Article  PubMed  CAS  Google Scholar 

  47. Nakamura M, Morimoto S, Yang Q, Hisamatsu T, Hanai N, Nakamura Y, Mori I, Kakudo K. Osteoclast-like cells express receptor activity modifying protein 2: application of laser capture microdissection. J Mol Endocrinol. 2005;34:257–61.

    Article  PubMed  CAS  Google Scholar 

  48. Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone. 2008;43:813–8.

    Article  PubMed  CAS  Google Scholar 

  49. Naot D, Callon KE, Grey A, Cooper GJ, Reid IR, Cornish J. A potential role for adrenomedullin as a local regulator of bone growth. Endocrinology. 2001;142:1849–57.

    Article  PubMed  CAS  Google Scholar 

  50. Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, Song S, Pitto RP, Cundy T, Cornish J, Reid IR. Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget’s disease of bone. J Bone Miner Res. 2007;22:298–309.

    Article  PubMed  CAS  Google Scholar 

  51. Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FA, Martin TJ. Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest. 1986;78:355–60.

    Article  PubMed  CAS  Google Scholar 

  52. Njuki F, Nicholl CG, Howard A, Mak JC, Barnes PJ, Girgis SI, Legon S. A new calcitonin-receptor-like sequence in rat pulmonary blood vessels. Clin Sci. 1993;85:385–8.

    PubMed  CAS  Google Scholar 

  53. Phelps E, Bezouglaia O, Tetradis S, Nervina JM. Parathyroid hormone induces receptor activity modifying protein-3 (RAMP3) expression primarily via 3′,5′-cyclic adenosine monophosphate signaling in osteoblasts. Calcif Tissue Int. 2005;77:96–103.

    Article  PubMed  CAS  Google Scholar 

  54. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM. International union of pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54:233–46.

    Article  PubMed  CAS  Google Scholar 

  55. Rakopoulos M, Ikegame M, Findlay DM, Martin TJ, Moseley JM. Short treatment of osteoclasts in bone marrow culture with calcitonin causes prolonged suppression of calcitonin receptor mRNA. Bone. 1995;17:447–53.

    Article  PubMed  CAS  Google Scholar 

  56. Reid IR, Schooler BA, Hannan SF, Ibbertson HK. The acute biochemical effects of four proprietary calcium preparations. Aust N Z J Med. 1986;16:193–7.

    Article  PubMed  CAS  Google Scholar 

  57. Reid IR, Ames R, Mason B, Reid HE, Bacon CJ, Bolland MJ, Gamble GD, Grey A, Horne A. Randomized controlled trial of calcium supplementation in healthy, nonosteoporotic, older men. Arch Intern Med. 2008;168:2276–82.

    Article  PubMed  CAS  Google Scholar 

  58. Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983;304:129–35.

    Article  PubMed  CAS  Google Scholar 

  59. Rouleau MF, Warshawsky H, Goltzman D. Specific receptors for calcitonin in the subfornical organ of the brain. Brain. 1984;107(Pt 1):107–14.

    Article  PubMed  Google Scholar 

  60. Schinke T, Liese S, Priemel M, Haberland M, Schilling AF, Catala-Lehnen P, Blicharski D, Rueger JM, Gagel RF, Emeson RB, Amling M. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J Bone Miner Res. 2004;19:2049–56.

    Article  PubMed  CAS  Google Scholar 

  61. Schlemmer A, Hassager C, Jensen SB, Christiansen C. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab. 1992;74:476–80.

    Article  PubMed  CAS  Google Scholar 

  62. Sondergaard BC, Oestergaard S, Christiansen C, Tanko LB, Karsdal MA. The effect of oral calcitonin on cartilage turnover and surface erosion in an ovariectomized rat model. Arthritis Rheum. 2007;56:2674–8.

    Article  PubMed  CAS  Google Scholar 

  63. Sondergaard BC, Wulf H, Henriksen K, Schaller S, Oestergaard S, Qvist P, Tanko LB, Bagger YZ, Christiansen C, Karsdal MA. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis Cartilage. 2006;14:759–68.

    Article  PubMed  CAS  Google Scholar 

  64. Takahashi S, Goldring S, Katz M, Hilsenbeck S, Williams R, Roodman GD. Downregulation of calcitonin receptor mRNA expression by calcitonin during human osteoclast-like cell differentiation. J Clin Invest. 1995;95:167–71.

    Article  PubMed  CAS  Google Scholar 

  65. Tippins JR, Morris HR, Panico M, Etienne T, Bevis P, Girgis S, MacIntyre I, Azria M, Attinger M. The ­myotropic and plasma-calcium modulating effects of calcitonin gene-related peptide (CGRP). Neuropeptides. 1984;4:425–34.

    Article  PubMed  CAS  Google Scholar 

  66. Uzan B, de Vernejoul MC, Cressent M. RAMPs and CRLR expressions in osteoblastic cells after dexamethasone treatment. Biochem Biophys Res Commun. 2004;321:802–8.

    Article  PubMed  CAS  Google Scholar 

  67. Villa I, Rubinacci A, Ravasi F, Ferrara AF, Guidobono F. Effects of amylin on human osteoblast-like cells. Peptides. 1997;18:537–40.

    Article  PubMed  CAS  Google Scholar 

  68. Villa I, Melzi R, Pagani F, Ravasi F, Rubinacci A, Guidobono F. Effects of calcitonin gene-related peptide and amylin on human osteoblast-like cells proliferation. Eur J Pharmacol. 2000;409:273–8.

    Article  PubMed  CAS  Google Scholar 

  69. Wada S, Martin TJ, Findlay DM. Homologous regulation of the calcitonin receptor in mouse osteoclast-like cells and human breast cancer T47D cells. Endocrinology. 1995;136:2611–21.

    Article  PubMed  CAS  Google Scholar 

  70. Wada S, Udagawa N, Nagata N, Martin TJ, Findlay DM. Calcitonin receptor down-regulation relates to calcitonin resistance in mature mouse osteoclasts. Endocrinology. 1996;137:1042–8.

    Article  PubMed  CAS  Google Scholar 

  71. Weiss RE, Singer FR, Gorn AH, Hofer DP, Nimni ME. Calcitonin stimulates bone formation when administered prior to initiation of osteogenesis. J Clin Invest. 1981;68:815–8.

    Article  PubMed  CAS  Google Scholar 

  72. Wener JA, Gorton SJ, Raisz LG. Escape from inhibition or resorption in cultures of fetal bone treated with calcitoninand parathyroid hromone. Endocrinology. 1972;90:752–9.

    Article  PubMed  CAS  Google Scholar 

  73. Woodrow JP, Sharpe CJ, Fudge NJ, Hoff AO, Gagel RF, Kovacs CS. Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactation. Endocrinology. 2006;147:4010–21.

    Article  PubMed  CAS  Google Scholar 

  74. Zaidi M, Datta HK, Moonga BS, MacIntyre I. Evidence that the action of calcitonin on rat ­osteoclasts is mediated by two G proteins acting via separate post-receptor pathways. J Endocrinol. 1990;126:473–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian Cornish Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Cornish, J., Naot, D., Martin, T.J. (2012). Calcitonin: Its Physiological Role and Emerging Therapeutics. In: Bronner, F., Farach-Carson, M., Roach, H. (eds) Bone-Metabolic Functions and Modulators. Topics in Bone Biology, vol 7. Springer, London. https://doi.org/10.1007/978-1-4471-2745-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2745-1_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2744-4

  • Online ISBN: 978-1-4471-2745-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics