Skip to main content

Molecular Diagnosis of Prosthetic Joint Infection

  • Chapter
  • First Online:
Infected Total Joint Arthroplasty

Abstract

Diagnosis of Prosthetic Joint Infection remains as a challenge in modern medicine. Conventional techniques lead to the diagnosis of many patients with a classical infectious syndrome, but differential diagnosis with other entities (particularly aseptic failure) is still a problem. Several molecular markers have been studied in the diagnosis of infection (like cytokines, procalcitonin, specific IgG, sICAM-1, VEGF or alpha2-Macroglobulin), and even for microbiological diagnosis (lipid S, PIA, icaADBC operon), with variable success. PCR-based genetic amplification procedures have also been studied for the detection of microbial genes in different clinical samples, and will be probably included in the next future as part of the diagnostic schemes for this kind of infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virolainen P, Lahteenmaki H, Hiltunen A, Sipola E, Meurman O, Nelimarkka O. The reliability of diagnosis of infection during revision arthroplasties. Scand J Surg. 2002;91(2):178–81.

    PubMed  CAS  Google Scholar 

  2. Trampuz A, Osmon DR, Hanssen AD, Steckelberg JM, Patel R. Molecular and antibiofilm approaches to prosthetic joint infection. Clin Orthop Relat Res. 2003;414(414):69–88.

    PubMed  Google Scholar 

  3. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54.

    PubMed  CAS  Google Scholar 

  4. Roberts VI, Esler CN, Harper WM. A 15-year follow-up study of 4606 primary total knee replacements. J Bone Joint Surg Br. 2007;89(11):1452–6.

    PubMed  CAS  Google Scholar 

  5. Cataldo MA, Petrosillo N, Cipriani M, Cauda R, Tacconelli E. Prosthetic joint infection: recent developments in diagnosis and management. J Infect. 2010;61(6):443–8.

    PubMed  Google Scholar 

  6. Azanza JR. What is the cost of a prosthesis infection? Enferm Infecc Microbiol Clin. 2001;19(1):44–5.

    PubMed  CAS  Google Scholar 

  7. Poultsides LA, Liaropoulos LL, Malizos KN. The socioeconomic impact of musculoskeletal infections. J Bone Joint Surg Am. 2010;92(11):e13.

    PubMed  Google Scholar 

  8. Gomez E, Patel R. Laboratory diagnosis of prosthetic joint infection, part I. Clin Microbiol Newslett. 2011;33(8):55–60. doi:10.1016/j.clinmicnews.2011.03.004.

    Google Scholar 

  9. Burger RR, Basch T, Hopson CN. Implant salvage in infected total knee arthroplasty. Clin Orthop Relat Res. 1991;273(273):105–12.

    PubMed  Google Scholar 

  10. Gallo J, Smizansky M, Radova L, Potomkova J. Comparison of therapeutic strategies for hip and knee prosthetic joint infection. Acta Chir Orthop Traumatol Cech. 2009;76(4):302–9.

    PubMed  Google Scholar 

  11. Moyad TF, Thornhill T, Estok D. Evaluation and management of the infected total hip and knee. Orthopedics. 2008;31(6):581–8.

    PubMed  Google Scholar 

  12. Tattevin P, Cremieux AC, Pottier P, Huten D, Carbon C. Prosthetic joint infection: when can prosthesis salvage be considered? Clin Infect Dis. 1999;29(2):292–5.

    PubMed  CAS  Google Scholar 

  13. Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Osmon DR. Prosthetic joint infection due to Mycobacterium tuberculosis: a case series and review of the literature. Am J Orthop (Belle Mead NJ). 1998;27(3):219–27.

    CAS  Google Scholar 

  14. Del Pozo JL, Patel R. Clinical practice. Infection associated with prosthetic joints. N Engl J Med. 2009;361(8):787–94.

    PubMed  Google Scholar 

  15. Piper KE, Jacobson MJ, Cofield RH, Sperling JW, Sanchez-Sotelo J, Osmon DR, et al. Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol. 2009;47(6):1878–84.

    PubMed  Google Scholar 

  16. Gallo J, Raska M, Dendis M, Florschutz AV, Kolar M. Molecular diagnosis of prosthetic joint infection. A review of evidence. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004;148(2):123–9.

    PubMed  CAS  Google Scholar 

  17. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006;19:349–56.

    PubMed  CAS  Google Scholar 

  18. Achermann Y, Vogt M, Leunig M, Wust J, Trampuz A. Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol. 2010;48(4):1208–14.

    PubMed  Google Scholar 

  19. Esteban J, Gomez-Barrena E, Cordero J, Martin-de-Hijas NZ, Kinnari TJ, Fernandez-Roblas R. Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol. 2008;46(2):488–92.

    PubMed  Google Scholar 

  20. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 2007;357(7):654–63.

    PubMed  CAS  Google Scholar 

  21. Tunney MM, Patrick S, Curran MD, Ramage G, Hanna D, Nixon JR, et al. Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol. 1999;37(10):3281–90.

    PubMed  CAS  Google Scholar 

  22. Clarke MT, Roberts CP, Lee PT, Gray J, Keene GS, Rushton N. Polymerase chain reaction can detect bacterial DNA in aseptically loose total hip arthroplasties. Clin Orthop Relat Res. 2004;427:132–7.

    PubMed  Google Scholar 

  23. Dempsey KE, Riggio MP, Lennon A, Hannah VE, Ramage G, Allan D, et al. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther. 2007;9(3):R46.

    PubMed  Google Scholar 

  24. Levine MJ, Mariani BA, Tuan RS, Booth Jr RE. Molecular genetic diagnosis of infected total joint arthroplasty. J Arthroplasty. 1995;10(1):93–4.

    PubMed  CAS  Google Scholar 

  25. Mariani BD, Tuan RS. Advances in the diagnosis of infection in prosthetic joint implants. Mol Med Today. 1998;4(5):207–13.

    PubMed  CAS  Google Scholar 

  26. Riggio MP, Dempsey KE, Lennon A, Allan D, Ramage G, Bagg J. Molecular detection of transcriptionally active bacteria from failed prosthetic hip joints removed during revision arthroplasty. Eur J Clin Microbiol Infect Dis. 2010;29(7):823–34.

    PubMed  CAS  Google Scholar 

  27. Hoeffel DP, Hinrichs SH, Garvin KL. Molecular diagnostics for the detection of musculoskeletal infection. Clin Orthop Relat Res. 1999;360:37–46.

    PubMed  Google Scholar 

  28. Kobayashi H, Oethinger M, Tuohy MJ, Procop GW, Hall GS, Bauer TW. Limiting false-positive polymerase chain reaction results: detection of DNA and mRNA to differentiate viable from dead bacteria. Diagn Microbiol Infect Dis. 2009;64(4):445–7.

    PubMed  CAS  Google Scholar 

  29. Worthington T, Dunlop D, Casey A, Lambert R, Luscombe J, Elliott T. Serum procalcitonin, interleukin-6, soluble intercellular adhesin molecule-1 and IgG to short-chain exocellular lipoteichoic acid as predictors of infection in total joint prosthesis revision. Br J Biomed Sci. 2010;67(2):71–6.

    PubMed  CAS  Google Scholar 

  30. Zimmerli W. Prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol. 1996;20(6):1045–63.

    Google Scholar 

  31. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374(Pt 1):1–20.

    PubMed  CAS  Google Scholar 

  32. Berbari E, Mabry T, Tsaras G, Spangehl M, Erwin PJ, Murad MH, et al. Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am. 2010;92(11):2102–9.

    PubMed  Google Scholar 

  33. Cronstein BN. Interleukin-6 – a key mediator of systemic and local symptoms in rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65 Suppl 1:S11–5.

    PubMed  Google Scholar 

  34. Andersson MK, Lundberg P, Ohlin A, Perry MJ, Lie A, Stark A, et al. Effects on osteoclast and osteoblast activities in cultured mouse calvarial bones by synovial fluids from patients with a loose joint prosthesis and from osteoarthritis patients. Arthritis Res Ther. 2007;9(1):R18.

    PubMed  Google Scholar 

  35. Nilsdotter-Augustinsson A, Briheim G, Herder A, Ljunghusen O, Wahlstrom O, Ohman L. Inflammatory response in 85 patients with loosened hip prostheses: a prospective study comparing inflammatory markers in patients with aseptic and septic prosthetic loosening. Acta Orthop. 2007;78(5):629–39.

    PubMed  Google Scholar 

  36. Jones KJ, Perris AD, Vernallis AB, Worthington T, Lambert PA, Elliott TS. Induction of inflammatory cytokines and nitric oxide in J774.2 cells and murine macrophages by lipoteichoic acid and related cell wall antigens from Staphylococcus epidermidis. J Med Microbiol. 2005;54(Pt 4):315–21.

    PubMed  CAS  Google Scholar 

  37. Di Cesare PE, Chang E, Preston CF, Liu CJ. Serum interleukin-6 as a marker of periprosthetic infection following total hip and knee arthroplasty. J Bone Joint Surg Am. 2005;87(9):1921–7.

    PubMed  Google Scholar 

  38. Bottner F, Wegner A, Winkelmann W, Becker K, Erren M, Gotze C. Interleukin-6, procalcitonin and TNF-alpha: markers of peri-prosthetic infection following total joint replacement. J Bone Joint Surg Br. 2007;89(1):94–9.

    PubMed  CAS  Google Scholar 

  39. Gilbert DN. Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J Clin Microbiol. 2010;48(7):2325–9.

    PubMed  CAS  Google Scholar 

  40. Gendrel D, Raymond J, Coste J, Moulin F, Lorrot M, Guerin S, et al. Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr Infect Dis J. 1999;18(10):875–81.

    PubMed  CAS  Google Scholar 

  41. Jones AE, Fiechtl JF, Brown MD, Ballew JJ, Kline JA. Procalcitonin test in the diagnosis of bacteremia: a meta-analysis. Ann Emerg Med. 2007;50(1):34–41.

    PubMed  Google Scholar 

  42. Kamme C, Lindberg L. Aerobic and anaerobic bacteria in deep infections after total hip arthroplasty: differential diagnosis between infectious and non-infectious loosening. Clin Orthop Relat Res. 1981;154(154):201–7.

    PubMed  Google Scholar 

  43. Rafiq M, Worthington T, Tebbs SE, Treacy RB, Dias R, Lambert PA, et al. Serological detection of Gram-positive bacterial infection around prostheses. J Bone Joint Surg Br. 2000;82(8):1156–61.

    PubMed  CAS  Google Scholar 

  44. van de Stolpe A, van der Saag PT. Intercellular adhesion molecule-1. J Mol Med (Berl). 1996;74(1):13–33.

    Google Scholar 

  45. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep. 2009;61(1):22–32.

    PubMed  CAS  Google Scholar 

  46. Pare G, Ridker PM, Rose L, Barbalic M, Dupuis J, Dehghan A, et al. Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci. PLoS Genet. 2011;7(4):e1001374.

    PubMed  CAS  Google Scholar 

  47. Deirmengian C, Hallab N, Tarabishy A, Della Valle C, Jacobs JJ, Lonner J, et al. Synovial fluid biomarkers for periprosthetic infection. Clin Orthop Relat Res. 2010;468(8):2017–23.

    PubMed  Google Scholar 

  48. Jacovides CL, Parvizi J, Adeli B, Jung KA. Molecular markers for diagnosis of periprosthetic joint infection. J Arthroplasty. 2011;12:12.

    Google Scholar 

  49. Gomez E, Patel R. Laboratory Diagnosis of Prosthetic Joint Infection, Part II. Clin Microbiol Newslett. 2011;33(9):63–70. doi:10.1016/j.clinmicnews.2011.04.001.

    Google Scholar 

  50. Mertens MT, Singh JA. Biomarkers in arthroplasty: a systematic review. Open Orthop J. 2011;5:92–105.

    PubMed  Google Scholar 

  51. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19(10):2003–12.

    PubMed  CAS  Google Scholar 

  52. O’Gara JP. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 2007;270(2):179–88.

    PubMed  Google Scholar 

  53. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007;28(9):1711–20.

    PubMed  CAS  Google Scholar 

  54. Frank KL, Hanssen AD, Patel R. icaA is not a useful diagnostic marker for prosthetic joint infection. J Clin Microbiol. 2004;42(10):4846–9.

    PubMed  CAS  Google Scholar 

  55. Arciola CR, Campoccia D, Gamberini S, Rizzi S, Donati ME, Baldassarri L, et al. Search for the insertion element IS256 within the ica locus of Staphylococcus epidermidis clinical isolates collected from biomaterial-associated infections. Biomaterials. 2004;25(18):4117–25.

    PubMed  CAS  Google Scholar 

  56. Galdbart JO, Allignet J, Tung HS, Ryden C, El Solh N. Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains and those responsible for infections of joint prostheses. J Infect Dis. 2000;182(1):351–5.

    PubMed  CAS  Google Scholar 

  57. Nilsdotter-Augustinsson A, Koskela A, Ohman L, Soderquist B. Characterization of coagulase-negative staphylococci isolated from patients with infected hip prostheses: use of phenotypic and genotypic analyses, including tests for the presence of the ica operon. Eur J Clin Microbiol Infect Dis. 2007;26(4):255–65.

    PubMed  CAS  Google Scholar 

  58. Esteban J, Molina-Manso D, Spiliopoulou I, Cordero-Ampuero J, Fernandez-Roblas R, Foka A, et al. Biofilm development by clinical isolates of Staphylococcus spp. from retrieved orthopedic prostheses. Acta Orthop. 2010;81(6):674–9.

    PubMed  Google Scholar 

  59. Yang S, Lin S, Kelen GD, Quinn TC, Dick JD, Gaydos CA, et al. Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens. J Clin Microbiol. 2002;40(9):3449–54.

    PubMed  CAS  Google Scholar 

  60. Tompkins LS. The use of molecular methods in infectious diseases. N Engl J Med. 1992;327(18):1290–7.

    PubMed  CAS  Google Scholar 

  61. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    PubMed  CAS  Google Scholar 

  62. Bauer TW, Parvizi J, Kobayashi N, Krebs V. Diagnosis of periprosthetic infection. J Bone Joint Surg Am. 2006;88(4):869–82.

    PubMed  Google Scholar 

  63. Bergin PF, Doppelt JD, Hamilton WG, Mirick GE, Jones AE, Sritulanondha S, et al. Detection of periprosthetic infections with use of ribosomal RNA-based polymerase chain reaction. J Bone Joint Surg Am. 2010;92(3):654–63.

    PubMed  Google Scholar 

  64. Fenollar F, Roux V, Stein A, Drancourt M, Raoult D. Analysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections. J Clin Microbiol. 2006;44(3):1018–28.

    PubMed  CAS  Google Scholar 

  65. Moojen DJ, Spijkers SN, Schot CS, Nijhof MW, Vogely HC, Fleer A, et al. Identification of orthopaedic infections using broad-range polymerase chain reaction and reverse line blot hybridization. J Bone Joint Surg Am. 2007;89(6):1298–305.

    PubMed  Google Scholar 

  66. Tarkin IS, Henry TJ, Fey PI, Iwen PC, Hinrichs SH, Garvin KL. PCR rapidly detects methicillin-resistant staphylococci periprosthetic infection. Clin Orthop Relat Res. 2003;414:89–94.

    PubMed  Google Scholar 

  67. Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nistico L, et al. New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol. 2011;61(2):133–40.

    PubMed  CAS  Google Scholar 

  68. Hogdall D, Hvolris JJ, Christensen L. Improved detection methods for infected hip joint prostheses. APMIS. 2010;118(11):815–23.

    PubMed  Google Scholar 

  69. Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol. 1999;2(3):299–305.

    PubMed  CAS  Google Scholar 

  70. Kobayashi N, Procop GW, Krebs V, Kobayashi H, Bauer TW. Molecular identification of bacteria from aseptically loose implants. Clin Orthop Relat Res. 2008;466(7):1716–25.

    PubMed  Google Scholar 

  71. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol. 1990;28(9):1942–6.

    PubMed  CAS  Google Scholar 

  72. Ecker DJ, Sampath R, Massire C, Blyn LB, Hall TA, Eshoo MW, et al. Ibis T5000: a universal biosensor approach for microbiology. Nat Rev Microbiol. 2008;6(7):553–8.

    PubMed  CAS  Google Scholar 

  73. Nikkari S, Lopez FA, Lepp PW, Cieslak PR, Ladd-Wilson S, Passaro D, et al. Broad-range bacterial detection and the analysis of unexplained death and critical illness. Emerg Infect Dis. 2002;8(2):188–94.

    PubMed  CAS  Google Scholar 

  74. Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA. 1999;96(25):14547–52.

    PubMed  CAS  Google Scholar 

  75. Uchida K, Yayama T, Kokubo Y, Miyazaki T, Nakajima H, Negoro K, et al. Direct detection of pathogens in osteoarticular infections by polymerase chain reaction amplification and microarray hybridization. J Orthop Sci. 2009;14(5):471–83.

    PubMed  Google Scholar 

  76. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. 2001;6(4):313–21.

    PubMed  CAS  Google Scholar 

  77. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4(6):337–48.

    PubMed  CAS  Google Scholar 

  78. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761–4.

    PubMed  CAS  Google Scholar 

  79. McCabe KM, Zhang YH, Huang BL, Wagar EA, McCabe ER. Bacterial species identification after DNA amplification with a universal primer pair. Mol Genet Metab. 1999;66(3):205–11.

    PubMed  CAS  Google Scholar 

  80. Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods. 2007;69(2):330–9.

    PubMed  CAS  Google Scholar 

  81. Fihman V, Hannouche D, Bousson V, Bardin T, Liote F, Raskine L, et al. Improved diagnosis specificity in bone and joint infections using molecular techniques. J Infect. 2007;55(6):510–7.

    PubMed  CAS  Google Scholar 

  82. Anthony RM, Brown TJ, French GL. DNA array technology and diagnostic microbiology. Expert Rev Mol Diagn. 2001;1(1):30–8.

    PubMed  CAS  Google Scholar 

  83. Lu JJ, Perng CL, Lee SY, Wan CC. Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J Clin Microbiol. 2000;38(6):2076–80.

    PubMed  CAS  Google Scholar 

  84. Rantakokko-Jalava K, Nikkari S, Jalava J, Eerola E, Skurnik M, Meurman O, et al. Direct amplification of rRNA genes in diagnosis of bacterial infections. J Clin Microbiol. 2000;38(1):32–9.

    PubMed  CAS  Google Scholar 

  85. McDowell A, Patrick S. Evaluation of nonculture methods for the detection of prosthetic hip biofilms. Clin Orthop Relat Res. 2005;437:74–82.

    PubMed  Google Scholar 

  86. Goldenberger D, Kunzli A, Vogt P, Zbinden R, Altwegg M. Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing. J Clin Microbiol. 1997;35(11):2733–9.

    PubMed  CAS  Google Scholar 

  87. Esteban J, Alonso-Rodriguez N, Sandoval E, Del Prado G, Ortiz-Perez A, Molina-Manso D, et al. Improved diagnosis of orthopaedic implant-related infection by PCR-hybridization after sonication. Acta Orthopaedica. 2012;83(3):299–304.

    PubMed  Google Scholar 

  88. Mariani BD, Martin DS, Levine MJ, Booth Jr RE, Tuan RS. The Coventry Award. Polymerase chain reaction detection of bacterial infection in total knee arthroplasty. Clin Orthop Relat Res. 1996;331:11–22.

    PubMed  Google Scholar 

  89. Stoodley P, Kathju S, Hu FZ, Erdos G, Levenson JE, Mehta N, et al. Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections. Clin Orthop Relat Res. 2005;437:31–40.

    PubMed  Google Scholar 

  90. Borst A, Box AT, Fluit AC. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur J Clin Microbiol Infect Dis. 2004;23(4):289–99.

    PubMed  CAS  Google Scholar 

  91. Grahn N, Olofsson M, Ellnebo-Svedlund K, Monstein HJ, Jonasson J. Identification of mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing of cloned amplicons. FEMS Microbiol Lett. 2003;219(1):87–91.

    PubMed  CAS  Google Scholar 

  92. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Kaczmarski EB, Fox AJ. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol. 2000;38(5):1747–52.

    PubMed  CAS  Google Scholar 

  93. Vandercam B, Jeumont S, Cornu O, Yombi JC, Lecouvet F, Lefevre P, et al. Amplification-based DNA analysis in the diagnosis of prosthetic joint infection. J Mol Diagn. 2008;10(6):537–43.

    PubMed  Google Scholar 

  94. De Man FHR, Graber P, Lüem M, Zimmerli W, Ochsner PE, Sendi P. Broad-range PCR in selected episodes of prosthetic joint infection. Infection. 2009;37(3):292–4.

    PubMed  Google Scholar 

  95. Kobayashi N, Inaba Y, Choe H, Iwamoto N, Ishida T, Yukizawa Y, et al. Rapid and sensitive detection of methicillin-resistant Staphylococcus periprosthetic infections using real-time polymerase chain reaction. Diagn Microbiol Infect Dis. 2009;64(2):172–6.

    PubMed  CAS  Google Scholar 

  96. Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004;10(3):190–212.

    PubMed  CAS  Google Scholar 

  97. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.

    PubMed  CAS  Google Scholar 

  98. Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG. Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region III standards. Cancer Res. 1998;58(17):3957–64.

    PubMed  CAS  Google Scholar 

  99. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem. 2000;285(2):194–204.

    PubMed  CAS  Google Scholar 

  100. Birmingham P, Helm JM, Manner PA, Tuan RS. Simulated joint infection assessment by rapid detection of live bacteria with real-time reverse transcription polymerase chain reaction. J Bone Joint Surg Am. 2008;90(3):602–8.

    PubMed  Google Scholar 

  101. Sheridan GE, Masters CI, Shallcross JA, MacKey BM. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol. 1998;64(4):1313–8.

    PubMed  CAS  Google Scholar 

  102. Sakai H, Procop GW, Kobayashi N, Togawa D, Wilson DA, Borden L, et al. Simultaneous detection of Staphylococcus aureus and coagulase-negative staphylococci in positive blood cultures by real-time PCR with two fluorescence resonance energy transfer probe sets. J Clin Microbiol. 2004;42(12):5739–44.

    PubMed  CAS  Google Scholar 

  103. Kobayashi N, Bauer TW, Togawa D, Lieberman IH, Sakai H, Fujishiro T, et al. A molecular gram stain using broad range PCR and pyrosequencing technology: a potentially useful tool for diagnosing orthopaedic infections. Diagn Mol Pathol. 2005;14(2):83–9.

    PubMed  CAS  Google Scholar 

  104. Kaufhold A, Podbielski A, Baumgarten G, Blokpoel M, Top J, Schouls L. Rapid typing of group A streptococci by the use of DNA amplification and non-radioactive allele-specific oligonucleotide probes. FEMS Microbiol Lett. 1994;119(1–2):19–25.

    PubMed  CAS  Google Scholar 

  105. Kobayashi N, Bauer TW, Tuohy MJ, Lieberman IH, Krebs V, Togawa D, et al. The comparison of pyrosequencing molecular Gram stain, culture, and conventional Gram stain for diagnosing orthopaedic infections. J Orthop Res. 2006;24(8):1641–9.

    PubMed  CAS  Google Scholar 

  106. Edwards MC, Gibbs RA. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 1994;3(4):S65–75.

    PubMed  CAS  Google Scholar 

  107. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995;23(6):1087–8.

    PubMed  CAS  Google Scholar 

  108. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999;2(3):317–22.

    PubMed  CAS  Google Scholar 

  109. Tillib SV, Mirzabekov AD. Advances in the analysis of DNA sequence variations using oligonucleotide microchip technology. Curr Opin Biotechnol. 2001;12(1):53–8.

    PubMed  CAS  Google Scholar 

  110. Jordan JA, Durso MB. Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. J Clin Microbiol. 2000;38(7):2574–8.

    PubMed  CAS  Google Scholar 

  111. Dora C, Altwegg M, Gerber C, Bottger EC, Zbinden R. Evaluation of conventional microbiological procedures and molecular genetic techniques for diagnosis of infections in patients with implanted orthopedic devices. J Clin Microbiol. 2008;46(2):824–5.

    PubMed  CAS  Google Scholar 

  112. Panousis K, Grigoris P, Butcher I, Rana B, Reilly JH, Hamblen DL. Poor predictive value of broad-range PCR for the detection of arthroplasty infection in 92 cases. Acta Orthop. 2005;76(3):341–6.

    PubMed  Google Scholar 

  113. Nolte FS, Caliendo AM. Molecular microbiology. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington, DC: ASM Press; 2011. p. 27–59.

    Google Scholar 

  114. Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol. 2004;42(5):1875–84.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Gómez-Barrena M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Esteban, J., Molina-Manso, D., del-Prado, G., Gómez-Barrena, E. (2012). Molecular Diagnosis of Prosthetic Joint Infection. In: Trebše, R. (eds) Infected Total Joint Arthroplasty. Springer, London. https://doi.org/10.1007/978-1-4471-2482-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2482-5_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2481-8

  • Online ISBN: 978-1-4471-2482-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics