Skip to main content

Pulmonary Embolism

  • Chapter
  • First Online:
The Right Heart
  • 1276 Accesses

Abstract

Acute pulmonary embolism (aPE) is one of the great masqueraders in medicine. Therefore, a high index of clinical suspicion coupled with a detailed history and physical examination are invaluable when evaluating patients. Acute venous thromboembolism (VTE) that usually originates from the lower extremity deep veins (DVT) is clearly recognized a significant health care problem. In the United States an estimated 900,000 cases of DVT and PE occur per year, causing approximately 300,000 deaths. Clinically, aPE is defined as massive, sub-massive or non-massive. In the assessment and management of patients presenting with suspected aPE, clinical information not only is critical to the initial assessment of prognosis; but also to guide therapeutic decision making. Hemodynamic stability and right ventricular (RV) function are found to be critically important in determining morbidity and mortality. Thus, risk stratification algorithms have been proposed to help physicians identify high versus low-risk patients aPE in order to expedite diagnosis and treatment. Computed tomographic pulmonary angiography (CTPA) has been the imaging of choice in aPE patients not only for its higher sensitivity and specificity; but also for providing alternate diagnosis in patients with non-specific signs and symptoms of aPE. More recently, echocardiography has been able to provide anatomical, functional as well as mechanical information regarding RV function and RV-pulmonary unit interaction. This chapter not only intents to summarize the most important pathophysiological processes involved from clot formation to distal pulmonary embolization; but also to describe potential hemodynamic implications and associated clinical manifestations. Current diagnostic and therapeutic algorithms are reviewed; available imaging modalities with most typically diagnostic aPE features are described; and mechanical characterization of the anatomical and functional abnormalities with regards to RV function are examined in terms of the hemodynamic derangement caused by acute obstruction to pulmonary flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

aPE:

Acute pulmonary embolism

CDMT:

Catheter-directed mechanical thrombectomy

CTPA:

Computed tomographic pulmonary angiography

DVT:

Deep venous thrombosis

IVS:

Interventricular septum

LV:

Left ventricle

PA:

Pulmonary artery

PH:

Pulmonary hypertension

PIOPED:

Prospective investigation of pulmonary embolism diagnosis

PVR:

Pulmonary vascular resistance

RV:

Right ventricle

RVOT:

RV outflow tract

TR:

Tricuspid regurgitation

TTE:

Transthoracic echocardiogram

V/Q scan:

Ventilation-perfusion scintigraphy

VTE:

Venous thromboembolism

VTI:

Velocity time integral

References

  1. Geerts WH, Pineo GF, Heit JA, Bergqvist D, Lassen MR, Colwell CW, Ray JG. Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126 Suppl 3:338–400S.

    Google Scholar 

  2. Den Heijer M, Rosendaal FR, Blom HJ, Gerrits WB, Bos GM. Hyperhomocysteinemia and venous thrombosis: a metaanalysis. Thromb Haemost. 1998;80:566–9.

    Google Scholar 

  3. Martinelli I, Mannucci PM, De Stefano V, Taioli E, Rossi V, Crosti F, Paciaroni K, Leone G, Faioni EM. Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: a study of 150 families. Blood. 1998;92:2353–8.

    CAS  PubMed  Google Scholar 

  4. Heit JA, Silverstein MD, Mohr DN, Petterson TM, Lohse CM, O’Fallon WM, Melton 3rd LJ. The epidemiology of venous thromboembolism in the community. Thromb Haemost. 2001;86:452–63.

    CAS  PubMed  Google Scholar 

  5. Galli M, Luckiani D, Bertolini G, Barbui T. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood. 2003;101:1827–32.

    CAS  PubMed  Google Scholar 

  6. White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost. 2003;90:446–55.

    CAS  PubMed  Google Scholar 

  7. Alikhan R, Cohen RT, Combe S, Samama MM, Desjardins L, Eldor A, Janbon C, Leizorovicz A, Olsson CG, Turpie AG. Risk factors for venous thromboembolism in hospitalized patients with acute medical illness: analysis of the MEDENOX Study. Arch Intern Med. 2004;164:963–8.

    PubMed  Google Scholar 

  8. Kyrle PA, Eichinger S. Deep vein thrombosis. Lancet. 2005;365:1163–74.

    PubMed  Google Scholar 

  9. Cina G, Marra R, Di Stasi C, Macis G. Epidemiology, pathophysiology and natural history of venous thromboembolism. Rays. 1996;21:315–27.

    CAS  PubMed  Google Scholar 

  10. Wilkins RW, Stanton JR. Elastic stockings in the prevention of pulmonary embolism: a progress report. N Engl J Med. 1953;248:1087–90.

    CAS  PubMed  Google Scholar 

  11. Ramzi DW, Leeper KV. DVT and pulmonary embolism: Part II. Treatment and prevention. Am Fam Physician. 2004;69:2841–8.

    PubMed  Google Scholar 

  12. Kearon C. Natural history of venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I22–30.

    PubMed  Google Scholar 

  13. Heit JA, Cohen AT, Anderson FJ. Estimated annual number of incident and recurrent, non-fatal venous thromboembolism (VTE) events in the US. Blood. 2005;106:11.

    Google Scholar 

  14. Boulay F, Berthier F, Schoukroun G, et al. Seasonal variations in hospital admission for deep vein thrombosis and pulmonary embolism: analysis of discharge data. BMJ. 2001;323:601–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Cervantes J, Rojas G. Virchows legacy: deep vein thrombosis and pulmonary embolism. World J Surg. 2005;29:S30–4.

    PubMed  Google Scholar 

  16. Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton 3rd LJ. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998;158:585–93.

    CAS  PubMed  Google Scholar 

  17. Oger E. Incidence of venous thromboembolism: a community-based study in Western France. EPI-GETBP Study Group. Groupe d’Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost. 2000;83:657–60.

    CAS  PubMed  Google Scholar 

  18. Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrom J. Incidence and mortality of venous thrombosis: a population based study. J Thromb Haemost. 2007;5:692–9.

    CAS  PubMed  Google Scholar 

  19. Cushman M, Tsai AW, White RH, Heckbert SR, Rosamond WD, Enright P, Folsom AR. Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. Am J Med. 2004;117:19–25.

    PubMed  Google Scholar 

  20. Rosendaal FR, Reitsma PH. Genetics of venous thrombosis. J Thromb Haemost. 2009;7 suppl 1:301–4.

    CAS  PubMed  Google Scholar 

  21. Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol. 2008;28:387–91.

    CAS  PubMed  Google Scholar 

  22. Becker BF, Heindl B, Kupatt C, Zahler S. Endothelial function and hemostasis. Zeitschrift Fur Kardiologie. 2000;89:160–7.

    CAS  PubMed  Google Scholar 

  23. Gross PL, Aird WC. The endothelium and thrombosis. Semin Thromb Hemost. 2000;26:463–78.

    CAS  PubMed  Google Scholar 

  24. Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest. 2012;122:2331–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451:914–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.

    CAS  PubMed  Google Scholar 

  27. Lippi G, Franchini M, Targher G. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol. 2011;8:502–12.

    PubMed  Google Scholar 

  28. Jackson SP. Arterial thrombosis-insidious, unpredictable and deadly. Nat Med. 2011;17:1423–36.

    CAS  PubMed  Google Scholar 

  29. Undas A, Ariëns RA. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol. 2011;31:e88–99.

    CAS  PubMed  Google Scholar 

  30. Wolberg AS. Plasma and cellular contributions to fibrin network formation, structure, and stability. Haemophilia. 2010;16 suppl 3:7–12.

    CAS  PubMed  Google Scholar 

  31. Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol. 2004;24:1015–22.

    CAS  PubMed  Google Scholar 

  32. Hoffbrand AV, Pettit JE. Essential hematology. 3rd ed. Oxford: Blackwell Scientific Publications; 1993.

    Google Scholar 

  33. Virchow RLK. Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Frankfurt: Von Meidinger & Sohn; 1856.

    Google Scholar 

  34. Iorio A, et al. Risk of recurrence after a first episode of symptomatic venous thromboembolism provoked by a transient risk factor: a systematic review. Arch Intern Med. 2010;170:1710–6.

    PubMed  Google Scholar 

  35. Rosendaal FR, van Hylckama Vlieg A, Doggen CJ. Venous thrombosis in the elderly. J Thromb Haemost. 2007;5 suppl 1:310–7.

    PubMed  Google Scholar 

  36. Lowe GD, et al. Epidemiology of coagulation factors, inhibitors and activation markers: the Third Glasgow MONICA Survey. I. Illustrative reference ranges by age, sex and hormone use. Br J Haematol. 1997;97:775–84.

    CAS  PubMed  Google Scholar 

  37. Li C, Ford ES, McGuire LC, Mokdad AH. Increasing trends in waist circumference and abdominal obesity among US adults. Obesity (Silver Spring). 2007;15:216–24.

    Google Scholar 

  38. Smeeth L, Cook C, Thomas S, Hall AJ, Hubbard R, Vallance P. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet. 2006;367:1075–9.

    PubMed  Google Scholar 

  39. Osterud B, Due Jr J. Blood coagulation in patients with benign and malignant tumours before and after surgery. Special reference to thromboplastin generation in monocytes. Scand J Haematol. 1984;32:258–64.

    CAS  PubMed  Google Scholar 

  40. Johnson GJ, Leis LA, Bach RR. Tissue factor activity of blood mononuclear cells is increased after total knee arthroplasty. Thromb Haemost. 2009;102:728–34.

    CAS  PubMed  Google Scholar 

  41. White RH, Romano PS, Zhou H, Rodrigo J, Bargar W. Incidence and time course of thromboembolic outcomes following total hip or knee arthroplasty. Arch Intern Med. 1998;158:1525–31.

    CAS  PubMed  Google Scholar 

  42. James AH. Venous thromboembolism in pregnancy. Arterioscler Thromb Vasc Biol. 2009;29:326–31.

    CAS  PubMed  Google Scholar 

  43. Bremme KA. Haemostatic changes in pregnancy. Best Pract Res Clin Haematol. 2003;16:153–68.

    PubMed  Google Scholar 

  44. James AH, Jamison MG, Brancazio LR, Myers ER. Venous thromboembolism during pregnancy and the postpartum period: incidence, risk factors, and mortality. Am J Obstet Gynecol. 2006;194:1311–5.

    PubMed  Google Scholar 

  45. Middeldorp S, et al. Effects on coagulation of levonorgestrel- and desogestrel-containing low dose oral contraceptives: a cross-over study. Thromb Haemost. 2000;84:4–8.

    CAS  PubMed  Google Scholar 

  46. Vandenbroucke JP, et al. Oral contraceptives and the risk of venous thrombosis. N Engl J Med. 2001;344:1527–35.

    CAS  PubMed  Google Scholar 

  47. Abdollahi M, Cushman M, Rosendaal FR. Obesity: risk of venous thrombosis and the interaction with coagulation factor levels and oral contraceptive use. Thromb Haemost. 2003;89:493–8.

    CAS  PubMed  Google Scholar 

  48. Ayer JG, Song C, Steinbeck K, Celermajer DS, Ben Freedman S. Increased tissue factor activity in monocytes from obese young adults. Clin Exp Pharmacol Physiol. 2010;37:1049–54.

    CAS  PubMed  Google Scholar 

  49. Khorana AA. Venous thromboembolism and prognosis in cancer. Thromb Res. 2010;125:490–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Caine GJ, Stonelake PS, Lip GY, Kehoe ST. The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia. 2002;4:465–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Allman-Farinelli MA. Obesity and venous thrombosis: a review. Semin Thromb Hemost. 2011;37:903–7.

    PubMed  Google Scholar 

  52. Noble S, Pasi J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br J Cancer. 2010;102:S2–9.

    PubMed Central  PubMed  Google Scholar 

  53. Heit JA. Venous thromboembolism epidemiology: Implications for prevention and management. Semin Thromb Hemost. 2002;28 Suppl 2:3–13.

    PubMed  Google Scholar 

  54. Cockett FB, Thomas ML. The iliac compression syndrome. Br J Surg. 1965;52:816–21.

    CAS  PubMed  Google Scholar 

  55. Moudgill N, Hager E, Gonsalves C, Larson R, Lombardi J, DiMuzio P. May-Thurner syndrome: case report and review of the literature involving modern endovascular therapy. Vascular. 2009;17:330–5.

    PubMed  Google Scholar 

  56. Bovill EG, van der Vliet A. Venous valvular stasisassociated hypoxia and thrombosis: what is the link? Annu Rev Physiol. 2011;73:527–45.

    CAS  PubMed  Google Scholar 

  57. Nicolaides AN, Kakkar VV, Field ES, et al. The origin of deep vein thrombosis: a venographic study. Br J Radiol. 1971;44:653–63.

    CAS  PubMed  Google Scholar 

  58. Kakkar VV, Howe CT, Flanc C, et al. Natural history of postoperative deep-vein thrombosis. Lancet. 1969;2:230–2.

    CAS  PubMed  Google Scholar 

  59. Cogo A, Lensing AWA, Prandoni P, et al. Distribution of thrombosis in patients with symptomatic deep-vein thrombosis: implications for simplifying the diagnostic process with compression ultrasound. Arch Intern Med. 1993;153:2777–80.

    CAS  PubMed  Google Scholar 

  60. Moser KM, LeMoine JR. Is embolic risk conditioned by location of deep venous thrombosis? Ann Intern Med. 1981;94:439–44.

    CAS  PubMed  Google Scholar 

  61. Malone PC, Agutter PS. The aetiology of deep venous thrombosis. QJM. 2006;99:581–93.

    CAS  PubMed  Google Scholar 

  62. Hamer JD, Malone PC, Silver IA. The PO2 in venous valve pockets: its possible bearing on thrombogenesis. Br J Surg. 1981;68(3):166–70.

    CAS  PubMed  Google Scholar 

  63. Liu GC, Ferris EJ, Reifsteck JR, Baker ME. Effect of anatomic variations on deep venous thrombosis of the lower extremity. Am J Roentgenol. 1986;146(4):845–8.

    CAS  Google Scholar 

  64. Varma MR, Varga AJ, Knipp BS, Sukheepod P, Upchurch GR, Kunkel SL, Wakefield TW, Henke PK. Neutropenia impairs venous thrombosis resolution in the rat. J Vasc Surg. 2003;38:1090–8.

    PubMed  Google Scholar 

  65. Stewart GJ. Neutrophils and deep venous thrombosis. Haemostasis. 1993;23 Suppl 1:127–40.

    PubMed  Google Scholar 

  66. Henke PK, Pearce CG, Moaveni DM, Moore AJ, Lynch EM, Longo C, Varma M, Dewyer NA, Deatrick KB, Upchurch Jr GR, Wakefield TW, Hogaboam C, Kunkel SL. Targeted deletion of CCR2 impairs deep vein thombosis resolution in a mouse model. J Immunol. 2006;177:3388–97.

    CAS  PubMed  Google Scholar 

  67. Henke PK, Varma MR, Moaveni DK, Dewyer NA, Moore AJ, Lynch EM, Longo C, Deatrick CB, Kunkel SL, Upchurch Jr GR, Wakefield TW. Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thromb Haemost. 2007;98:1045–55.

    CAS  PubMed  Google Scholar 

  68. White RH. The epidemiology of venous thromboembolism. Circulation. 2003;107:I-4–8.

    Google Scholar 

  69. Heit JA, Silverstein MD, Mohr DN, et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med. 2000;160:809–15.

    CAS  PubMed  Google Scholar 

  70. White RH, Gettner S, Newman JM, Trauner KB, Romano PS. Predictors of rehospitalization for symptomatic venous thromboembolism after total hip arthroplasty. N Engl J Med. 2000;343:1758–64.

    CAS  PubMed  Google Scholar 

  71. Goodnough LT, Saito H, Manni A, Jones PK, Pearson OH. Increased incidence of thromboembolism in stage IV breast cancer patients treated with a five-drug chemotherapy regimen. A study of 159 patients. Cancer. 1984;54:1264–8.

    CAS  PubMed  Google Scholar 

  72. Levine MN, Gent M, Hirsh J, et al. The thrombogenic effect of anticancer drug therapy in women with stage II breast cancer. N Engl J Med. 1988;318:404–7.

    CAS  PubMed  Google Scholar 

  73. Samama MM. An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the Sirius study. Arch Intern Med. 2000;160:3415–20.

    CAS  PubMed  Google Scholar 

  74. Rosendaal FR. Risk factors for venous thrombotic disease. Thromb Haemost. 1999;82:610–9.

    CAS  PubMed  Google Scholar 

  75. Kierkegaard A. Incidence and diagnosis of deep vein thrombosis associated with pregnancy. Acta Obstet Gynecol Scand. 1983;62:239–43.

    CAS  PubMed  Google Scholar 

  76. Chasan-Taber L, Stampfer MJ. Epidemiology of oral contraceptives and cardiovascular disease. Ann Intern Med. 1998;128:467–77.

    CAS  PubMed  Google Scholar 

  77. Jick H, Kaye JA, Vasilakis-Scaramozza C, Jick SS. Risk of venous thromboembolism among users of third generation oral contraceptives compared with users of oral contraceptives with levonorgestrel before and after 1995: cohort and case control analysis. BMJ. 2000;321:1190–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Devor M, Barrett-Connor E, Renvall M, Feigal Jr D, Ramsdell J. Estrogen replacement therapy and the risk of venous thrombosis. Am J Med. 1992;92:275–82.

    CAS  PubMed  Google Scholar 

  79. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6:826–35.

    CAS  PubMed  Google Scholar 

  80. Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008;451:943–8.

    CAS  PubMed  Google Scholar 

  81. Larsen WJ. Human embryology. New York: Churchill Livingstone; 1993. p. 111–204.

    Google Scholar 

  82. Moore KL, Persaud TV. The developing human: clinically oriented embryology. Philadelphia: WB Saunders; 1998. p. 241–53. 329–380.

    Google Scholar 

  83. Murillo H, Cutalo MJ, Jones RP, Lane MJ, Fleischmann D, Restrepo CS. Pulmonary circulation imaging: embryology and normal anatomy. Semin Ultrasound CT MR. 2012;33:473–84.

    PubMed  Google Scholar 

  84. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90:1291–335.

    CAS  PubMed  Google Scholar 

  85. Burri PH. Structural aspects of postnatal lung development—alveolar formation and growth. Biol Neonate. 2006;89:313–22.

    PubMed  Google Scholar 

  86. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367–520.

    CAS  PubMed  Google Scholar 

  87. Berrocal T, Madrid C, Novo S, et al. Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics. 2003;24:e17.

    PubMed  Google Scholar 

  88. Castañer E, Gallardo X, Rimola J, et al. Congenital and acquired pulmonary artery anomalies in the adult: radiologic overview. Radiographics. 2006;26:349–71.

    PubMed  Google Scholar 

  89. Dillman JR, Yarram SG, Hernandez RJ. Pictorial essay: imaging of pulmonary venous developmental anomalies. Am J Roentgenol. 2009;192:1272–85.

    Google Scholar 

  90. Grosse C, Grosse A. CT findings in diseases associated with pulmonary hypertension: a current review. Radiographics. 2010;30:1753–77.

    PubMed  Google Scholar 

  91. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37:183–8.

    CAS  PubMed  Google Scholar 

  92. Becattini C, Agnelli G. Predictors of mortality from pulmonary embolism and their influence on clinical management. Thromb Haemost. 2008;100:747–51.

    CAS  PubMed  Google Scholar 

  93. Sanchez O, Trinquart L, Colombet I, Durieux P, Huisman MV, Chatellier G, et al. Prognostic value of right ventricular dysfunction in patients with haemodynamically stable pulmonary embolism: a systematic review. Eur Heart J. 2008;29:1569–77.

    PubMed  Google Scholar 

  94. Stevinson BG, Hernandez-Nino J, Rose G, Kline JA. Echocardiographic and functional cardiopulmonary problems six months after first-time pulmonary embolism in previously healthy patients. Eur Heart J. 2007;28:2517–24.

    PubMed  Google Scholar 

  95. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    PubMed  Google Scholar 

  96. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91.

    PubMed  Google Scholar 

  97. Hemnes AR, Champion HC. Right heart function and haemodynamics in pulmonary hypertension. Int J Clin Pract. 2008;62 Suppl 160:11–9.

    Google Scholar 

  98. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009;119:2250–94.

    PubMed  Google Scholar 

  99. Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999;353:1386–9.

    CAS  PubMed  Google Scholar 

  100. Watts JA, Marchick MR, Kline JA. Right ventricular heart failure from pulmonary embolism: key distinctions from chronic pulmonary hypertension. J Card Fail. 2010;16:250–9.

    PubMed  Google Scholar 

  101. Bristow MR, Zisman LS, Lowes BD, Abraham WT, Badesch DB, Groves BM, Voelkel NF, Lynch DM, Quaife RA. The pressure-overloaded right ventricle in pulmonary hypertension. Chest. 1998;114(1 Suppl):101S–6.

    CAS  PubMed  Google Scholar 

  102. Carabello BA. The relationship of left ventricular geometry and hypertrophy to left ventricular function in valvular heart disease. J Heart Valve Dis. 1995;4 Suppl 2:S132–8.

    PubMed  Google Scholar 

  103. Konstam MA, Cohen SR, Salem DN, et al. Comparison of left and right ventricular end-systolic pressure-volume relations in congestive heart failure. J Am Coll Cardiol. 1985;5:1326–34.

    CAS  PubMed  Google Scholar 

  104. Nakamura H, Adachi H, Sudoh A, Yagyu H, Kishi K, Oh-ishi S, et al. Subacute cor pulmonale due to tumor embolism. Intern Med. 2004;43:420–2.

    PubMed  Google Scholar 

  105. Archer S, Michelakis E. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors, and controversies. News Physiol Sci. 2002;17:131–7.

    CAS  PubMed  Google Scholar 

  106. Memtsoudis SG, Rosenberger P, Walz JM. Critical care issues in the patient after major joint replacement. J Intensive Care Med. 2007;22:92–104.

    PubMed  Google Scholar 

  107. Toledo LS, Mauad R. Complications of body sculpture: prevention and treatment. Clin Plast Surg. 2006;33:1–11.

    PubMed  Google Scholar 

  108. Mirski MA, Lele AV, Fitzsimmons L, Toung TJ. Diagnosis and treatment of vascular air embolism. Anesthesiology. 2007;106:164–77.

    PubMed  Google Scholar 

  109. Smulders YM. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc Res. 2000;48(1):23–33.

    CAS  PubMed  Google Scholar 

  110. Kline JA. Inhibition of prostaglandin synthesis during polystyrene microsphere-induced pulmonary embolism in the rat. Am J Physiol Lung Cell Mol Physiol. 2003;284:L1072–81.

    PubMed  Google Scholar 

  111. Reeves WC, Demers LM, Wood MA, Skarlatos S, Copenhaver G, Whitesell L, et al. The release of thromboxane A2 and prostacyclin following experimental acute pulmonary embolism. Prostaglandins Leukot Med. 1983;11:1–10.

    CAS  PubMed  Google Scholar 

  112. Todd MH, Forrest JB, Cragg DB. The effects of aspirin and methysergide, singly and in combination, on systemic haemodynamic responses to pulmonary embolism. Can Anaesth Soc J. 1981;28:373–80.

    CAS  PubMed  Google Scholar 

  113. Breuer J, Meschig R, Breuer HW, Arnold G. Effects of serotonin on the cardiopulmonary circulatory system with and without 5-HT2-receptor blockade by ketanserin. J Cardiovasc Pharmac. 1985;7:64–6.

    Google Scholar 

  114. Battistini B. Modulation and roles of the endothelins in the pathophysiology of pulmonary embolism. Can J Physiol Pharmacol. 2003;81:555–69.

    CAS  PubMed  Google Scholar 

  115. Kapsch DN, Metzler M, Silver D. Contributions of prostaglandin F2alpha and thromboxane A2 to the acute cardiopulmonary changes of pulmonary embolism. J Surg Res. 1981;30:522–9.

    CAS  PubMed  Google Scholar 

  116. Kim SH, Yi MZ, Kim DH, Song JM, Kang DH, Lee SD, Song JK. Prognostic value of echocardiographic estimation of pulmonary vascular resistance in patients with acute pulmonary thromboembolism. J Am Soc Echocardiogr. 2011;24:693–8.

    PubMed  Google Scholar 

  117. Torbicki A, Galié N, Covezzoli A, Rossi E, De Rosa M, Goldhaber SZ, ICOPER Study Group. Right heart thrombi in pulmonary embolism: results from the International Cooperative Pulmonary Embolism Registry. J Am Coll Cardiol. 2003;41:2245–51.

    PubMed  Google Scholar 

  118. Nassiri N, Jain A, McPhee D, Mina B, Rosen RJ, Giangola G, et al. Massive and submassive pulmonary embolism: experience with an algorithm for catheter-directed mechanical thrombectomy. Ann Vasc Surg. 2012;26(1):18–24.

    PubMed  Google Scholar 

  119. Agnelli G, Becattini C. Acute pulmonary embolism. N Engl J Med. 2010;363:266–74.

    CAS  PubMed  Google Scholar 

  120. Piazza G, Goldhaber SZ. Current concepts: chronic thromboembolic pulmonary hypertension. N Engl J Med. 2011;364:351–60.

    CAS  PubMed  Google Scholar 

  121. Hsiao SH, Lee CY, Chang SM, Yang SH, Lin SK, Huang WC. Pulmonary embolism and right heart function: insights from myocardial Doppler tissue imaging. J Am Soc Echocardiogr. 2006;19:822–8.

    PubMed  Google Scholar 

  122. Iwadate K, Tanno K, Doi M, Takatori T, Ito Y. Two cases of right ventricular ischemic injury due to massive pulmonary embolism. Forensic Sci Int. 2001;116:189–95.

    CAS  PubMed  Google Scholar 

  123. Begieneman MP, van de Goot FR, van der Bilt IA, Noordegraaf AV, Spreeuwenberg MD, Paulus WJ, et al. Pulmonary embolism causes endomyocarditis in the human heart. Heart. 2008;94:450–6.

    CAS  PubMed  Google Scholar 

  124. Zagorski J, Gellar MA, Obraztsova M, Kline JA, Watts JA. Inhibition of CINC-1 decreases right ventricular damage caused by experimental pulmonary embolism in rats. J Immunol. 2007;179:7820–6.

    CAS  PubMed  Google Scholar 

  125. Watts JA, Zagorski J, Gellar MA, Stevinson BG, Kline JA. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats. J Mol Cell Cardiol. 2006;41:296–307.

    CAS  PubMed  Google Scholar 

  126. Kline JA, Zeitouni R, Marchick MR, Hernandez-Nino J, Rose GA. Comparison of 8 biomarkers for prediction of right ventricular hypokinesis 6 months after submassive pulmonary embolism. Am Heart J. 2008;156:308–14.

    CAS  PubMed  Google Scholar 

  127. Nordenholz KE, Mitchell AM, Kline JA. Direct comparison of the diagnostic accuracy of fifty protein biological markers of pulmonary embolism for use in the emergency department. Acad Emerg Med. 2008;15:795–9.

    PubMed  Google Scholar 

  128. Mitchell AM, Nordenholz KE, Kline JA. Tandem measurement of D dimer and myeloperoxidase of C-reactive protein to effectively screen for pulmonary embolism in the emergency department. Acad Emerg Med. 2008;15:800–5.

    PubMed  Google Scholar 

  129. Torrent-Guasp F, Whimster WF, Redmann K. A silicone rubber mould of the heart. Technol Health Care. 1997;5:13–20.

    CAS  PubMed  Google Scholar 

  130. Buckberg GD, RESTORE Group. The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothorac Surg. 2006;1(29 Suppl 1):S272–8.

    Google Scholar 

  131. Sallin EA. Fiber orientation and ejection fraction in the human left ventricle. Biophys J. 1969;9:954–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Damiano Jr RJ, La Follette Jr P, Cox JL, Lowe JE, Santamore WP. Significant left ventricular contribution to right ventricular systolic function. Am J Physiol. 1991;261(5 Pt 2):H1514–24.

    PubMed  Google Scholar 

  133. Osculati G, Malfatto G, Chianca R, Perego GB. Left-to-right systolic ventricular interaction in patients undergoing biventricular stimulation for dilated cardiomyopathy. J Appl Physiol. 2010;109:418–23.

    PubMed  Google Scholar 

  134. Schwarz K, Singh S, Dawson D, Frenneaux MP. Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circ. 2013;22:507–11.

    PubMed  Google Scholar 

  135. Mori S, Nakatani S, Kanzaki H, Yamagata K, Take Y, Matsuura Y, et al. Patterns of the interventricular septal motion can predict conditions of patients with pulmonary hypertension. J Am Soc Echocardiogr. 2008;21:386–93.

    PubMed  Google Scholar 

  136. Ramani GV, Bazaz R, Edelman K, López-Candales A. Pulmonary hypertension affects left ventricular basal twist: a novel use for speckle-tracking imaging. Echocardiography. 2009;26:44–51.

    PubMed  Google Scholar 

  137. López-Candales A, Edelman K. Chronic pulmonary hypertension causes significant interventricular spatiotemporal dyssynchrony when onset of diastolic flow signals are assessed by color M-mode. Echocardiography. 2012;29:653–60.

    PubMed  Google Scholar 

  138. Piazza G. Submassive pulmonary embolism. JAMA. 2013;309(2):171–80.

    CAS  PubMed  Google Scholar 

  139. Konstantinides S. Should thrombolytic therapy be used in patients with pulmonary embolism? Am J Cardiovasc Drugs. 2004;4:69–74.

    PubMed  Google Scholar 

  140. Kasper W, Konstantinides S, Geibel A, Olschewski M, Heinrich F, Grosser KD, et al. Management strategies and determinants of outcome in acute major pulmonary embolism: results of a multicenter registry. J Am Coll Cardiol. 1997;30:1165–71.

    CAS  PubMed  Google Scholar 

  141. Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest. 2002;121:877–905.

    PubMed  Google Scholar 

  142. Goldhaber SZ, Haire WD, Feldstein ML, Miller M, Toltzis R, Smith JL, et al. Alteplase versus heparin in acute pulmonary embolism: randomized trial assessing right-ventricular function and pulmonary perfusion. Lancet. 1993;314:507–11.

    Google Scholar 

  143. Grifoni S, Olivotto I, Cecchini P, Pieralli F, Camaiti A, Santoro G, et al. Short-term clinical outcome of patients with pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation. 2000;101:2817–22.

    CAS  PubMed  Google Scholar 

  144. Frémont B, Pacouret G, Jacobi D, Puglisi R, Charbonnier B, de Labriolle A. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest. 2008;133:358–62.

    PubMed  Google Scholar 

  145. Sanchez O, Trinquart L, Caille V, Couturaud F, Pacouret G, Meneveau N, et al. Prognostic factors for pulmonary embolism: the PREP Study, a prospective multicenter cohort study. Am J Respir Crit Care Med. 2010;181:168–73.

    CAS  PubMed  Google Scholar 

  146. Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Prognostic role of echocardiography among patients with acute pulmonary embolism and a systolic arterial pressure of 90 mm Hg or higher. Arch Intern Med. 2005;165:1777–81.

    PubMed  Google Scholar 

  147. Stein PD, Henry JW. Prevalence of acute pulmonary embolism among patients in a general hospital and at autopsy. Chest. 1995;108:978–81.

    CAS  PubMed  Google Scholar 

  148. Aujesky D, Perrier A, Roy PM, Stone RA, Cornuz J, Meyer G, Obrosky DS, Fine MJ. Validation of a clinical prognostic model to identify low-risk patients with pulmonary embolism. J Intern Med. 2007;261:597–604.

    CAS  PubMed  Google Scholar 

  149. Barra SN, Paiva L, Providência R, Fernandes A, Marques AL. A review on state-of-the-art data regarding safe early discharge following admission for pulmonary embolism: what do we know? Clin Cardiol. 2013;36(9):507–15.

    PubMed  Google Scholar 

  150. Barra S, Paiva L, Providência R, Fernandes A, Nascimento J, Marques AL. LR-PED rule: low risk pulmonary embolism decision rule – a new decision score for low risk pulmonary embolism. Thromb Res. 2012;130:327–33.

    CAS  PubMed  Google Scholar 

  151. Jiménez D, Aujesky D, Moores L, Gómez V, Lobo JL, Uresandi F, Otero R, Monreal M, Muriel A, Yusen RD, RIETE Investigators. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med. 2010;170:1383–9.

    PubMed  Google Scholar 

  152. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

    PubMed  Google Scholar 

  153. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31.

    PubMed  Google Scholar 

  154. Burgess MI, Mogulkoc N, Bright-Thomas RJ, Bishop P, Egan JJ, Ray SG. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr. 2002;15:633–9.

    PubMed  Google Scholar 

  155. Dupont MV, Drăgean CA, Coche EE. Right ventricle function assessment by MDCT. AJR Am J Roentgenol. 2011;196:77–86.

    PubMed  Google Scholar 

  156. Ghaye B, Ghuysen A, Bruyere PJ, D’Orio V, Dondelinger RF. Can CT pulmonary angiography allow assessment of severity and prognosis in patients presenting with pulmonary embolism? What the radiologist needs to know. Radiographics. 2006;26:23–39.

    PubMed  Google Scholar 

  157. Contractor S, Maldjian PD, Sharma VK, Gor DM. Role of helical CT in detecting right ventricular dysfunction secondary to acute pulmonary embolism. J Comput Assist Tomogr. 2002;26:587–91.

    PubMed  Google Scholar 

  158. Lim KE, Chan CY, Chu PH, Hsu YY, Hsu WC. Right ventricular dysfunction secondary to acute massive pulmonary embolism detected by helical computed tomography pulmonary angiography. Clin Imaging. 2005;29:16–21.

    PubMed  Google Scholar 

  159. López-Candales A, Dohi K, Iliescu A, Peterson RC, Edelman K, Bazaz R. An abnormal right ventricular apical angle is indicative of global right ventricular impairment. Echocardiography. 2006;23:361–8.

    PubMed  Google Scholar 

  160. Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5:918–27.

    CAS  PubMed  Google Scholar 

  161. Klima UP, Lee MY, Guerrero JL, Laraia PJ, Levine RA, Vlahakes GJ. Determinants of maximal right ventricular function: role of septal shift. J Thorac Cardiovasc Surg. 2002;123:72–80.

    PubMed  Google Scholar 

  162. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation. 1983;68:68–75.

    CAS  PubMed  Google Scholar 

  163. Alzeer AH, Al-Mobeirek AF, Al-Otair HA, Elzamzamy UA, Joherjy IA, Shaffi AS. Right and left ventricular function and pulmonary artery pressure in patients with bronchiectasis. Chest. 2008;133:468–73.

    PubMed  Google Scholar 

  164. Vonk Noordegraaf A, Marcus JT, Roseboom B, Postmus PE, Faes TJ, de Vries PM. The effect of right ventricular hypertrophy on left ventricular ejection fraction in pulmonary emphysema. Chest. 1997;112:640–5.

    CAS  PubMed  Google Scholar 

  165. Araoz PA, Gotway MB, Harrington JR, Harmsen WS, Mandrekar JN. Pulmonary embolism: prognostic CT findings. Radiology. 2007;242:889–97.

    PubMed  Google Scholar 

  166. López-Candales A, Rajagopalan N, Kochar M, Gulyasy B, Edelman K. Systolic eccentricity index identifies right ventricular dysfunction in pulmonary hypertension. Int J Cardiol. 2008;129(3):424–6.

    PubMed  Google Scholar 

  167. López-Candales A, Bazaz R, Edelman K, Gulyasy B. Apical systolic eccentricity index: a better marker of right ventricular compromise in pulmonary hypertension. Echocardiography. 2010;27:534–8.

    PubMed  Google Scholar 

  168. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70:657–62.

    CAS  PubMed  Google Scholar 

  169. López-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. A delayed time of the peak tricuspid regurgitation signal: marker of right ventricular dysfunction. Am J Med Sci. 2008;336:224–9.

    PubMed  Google Scholar 

  170. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41:1021–7.

    PubMed  Google Scholar 

  171. Roule V, Labombarda F, Pellissier A, Sabatier R, Lognoné T, Gomes S, et al. Echocardiographic assessment of pulmonary vascular resistance in pulmonary arterial hypertension. Cardiovasc Ultrasound. 2010;8:21.

    PubMed Central  PubMed  Google Scholar 

  172. Rajagopalan N, Simon MA, Suffoletto MS, Shah H, Edelman K, Mathier MA, López-Candales A. Noninvasive estimation of pulmonary vascular resistance in pulmonary hypertension. Echocardiography. 2009;26:489–94.

    PubMed  Google Scholar 

  173. Park JR, Chang SA, Jang SY, No HJ, Park SJ, Choi SH, Park SW, Kim H, Choe YH, Lee KS, Oh JK, Kim DK. Evaluation of right ventricular dysfunction and prediction of clinical outcomes in acute pulmonary embolism by chest computed tomography: comparisons with echocardiography. Int J Cardiovasc Imaging. 2012;28:979–87.

    PubMed  Google Scholar 

  174. van der Meer RW, Pattynama PM, van Strijen MJ, van den Berg-Huijsmans AA, Hartmann IJ, Putter H, de Roos A, Huisman MV. Right ventricular dysfunction and pulmonary obstruction index at helical CT: prediction of clinical outcome during 3-month follow-up in patients with acute pulmonary embolism. Radiology. 2005;235:798–803.

    PubMed  Google Scholar 

  175. Furlan A, Aghayev A, Chang CC, Patil A, Jeon KN, Park B, Fetzer DT, Saul M, Roberts MS, Bae KT. Short-term mortality in acute pulmonary embolism: clot burden and signs of right heart dysfunction at CT pulmonary angiography. Radiology. 2012;265:283–93.

    PubMed Central  PubMed  Google Scholar 

  176. Golpe R, Testa-Fernández A, Pérez-de-Llano LA, Castro-Añón O, González-Juanatey C, Pérez-Fernández R, Fariñas MC. Long-term clinical outcome of patients with persistent right ventricle dysfunction or pulmonary hypertension after acute pulmonary embolism. Eur J Echocardiogr. 2011;12:756–61.

    PubMed  Google Scholar 

  177. Konstantinides S. Pulmonary embolism: impact of right ventricular dysfunction. Curr Opin Cardiol. 2005;20:496–501.

    PubMed  Google Scholar 

  178. Zhu L, Yang Y, Wu Y, Zhai Z, Wang C. Value of right ventricular dysfunction for prognosis in pulmonary embolism. Int J Cardiol. 2008;127:40–5.

    PubMed  Google Scholar 

  179. Rajagopalan N, Simon MA, Mathier MA, López-Candales A. Identifying right ventricular dysfunction with tissue Doppler imaging in pulmonary hypertension. Int J Cardiol. 2008;128(3):359–63.

    PubMed  Google Scholar 

  180. López-Candales A, Rajagopalan N, Dohi K, Edelman K, Gulyasy B. Normal range of mechanical variables in pulmonary hypertension: a tissue Doppler imaging study. Echocardiography. 2008;25:864–72.

    PubMed  Google Scholar 

  181. López-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. Comparative echocardiographic analysis of mitral and tricuspid annular motion: differences explained with proposed anatomic-structural correlates. Echocardiography. 2007;24:353–9.

    PubMed  Google Scholar 

  182. Bazaz R, Edelman K, Gulyasy B, López-Candales A. Evidence of robust coupling of atrioventricular mechanical function of the right side of the heart: insights from M-mode analysis of annular motion. Echocardiography. 2008;25:557–61.

    PubMed  Google Scholar 

  183. López-Candales A, Gulyasy B, Edelman K, Bazaz R. Delayed tricuspid valve ascent and descent components in pulmonary hypertension. Int J Cardiol. 2009;131:399–402.

    PubMed  Google Scholar 

  184. Holley AB, Cheatham JG, Jackson JL, Moores LK, Villines TC. Novel quantitative echocardiographic parameters in acute PE. J Thromb Thrombolysis. 2009;28:506–12.

    PubMed  Google Scholar 

  185. Rydman R, Söderberg M, Larsen F, Caidahl K, Alam M. Echocardiographic evaluation of right ventricular function in patients with acute pulmonary embolism: a study using tricuspid annular motion. Echocardiography. 2010;27:286–93.

    PubMed  Google Scholar 

  186. Park JH, Kim JH, Lee JH, Choi SW, Jeong JO, Seong IW. Evaluation of right ventricular systolic function by the analysis of tricuspid annular motion in patients with acute pulmonary embolism. J Cardiovasc Ultrasound. 2012;20:181–8.

    PubMed Central  PubMed  Google Scholar 

  187. Saxena N, Rajagopalan N, Edelman K, López-Candales A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography. 2006;23:750–5.

    PubMed  Google Scholar 

  188. Lopez-Candales A, Eleswarapu A, Shaver J, Edelman K, Gulyasy B, Candales MD. Right ventricular outflow tract spectral signal: a useful marker of right ventricular systolic performance and pulmonary hypertension severity. Eur J Echocardiogr. 2010;11:509–15.

    PubMed  Google Scholar 

  189. Lopez-Candales A, Edelman K, Gulyasy B, Candales MD. Differences in the duration of total ejection between right and left ventricles in chronic pulmonary hypertension. Echocardiography. 2011;28:509–15.

    PubMed  Google Scholar 

  190. López-Candales A, Edelman K. Ratio of right to left ventricular ejection: a pilot study using Doppler to detect interventricular dyssynchrony. Clin Cardiol. 2011;34:366–71.

    PubMed  Google Scholar 

  191. López-Candales A, Edelman K. Shape of the right ventricular outflow Doppler envelope and severity of pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2012;13:309–16.

    PubMed  Google Scholar 

  192. López-Candales A, Edelman K. Right ventricular outflow tract systolic excursion: a distinguishing echocardiographic finding in acute pulmonary embolism. Echocardiography. 2013;30(6):649–57.

    PubMed  Google Scholar 

  193. López-Candales A. Marked reduction in the ratio of main right ventricular chamber to outflow tract function in patients with proximal bilateral acute pulmonary embolism. Int J Cardiol. 2013;168(1):592–3.

    PubMed  Google Scholar 

  194. McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol. 1996;78:469–73.

    CAS  PubMed  Google Scholar 

  195. Casazza F, Bongarzoni A, Capozi A, Agostoni O. Regional right ventricular dysfunction in acute pulmonary embolism and right ventricular infarction. Eur J Echocardiogr. 2005;6:11–4.

    PubMed  Google Scholar 

  196. Dambrauskaite V, Delcroix M, Claus P, Herbots L, D’hooge J, Bijnens B, Rademakers F, Sutherland GR. Regional right ventricular dysfunction in chronic pulmonary hypertension. J Am Soc Echocardiogr. 2007;20:1172–80.

    PubMed  Google Scholar 

  197. Rajagopalan N, Simon MA, Shah H, Mathier MA, López-Candales A. Utility of right ventricular tissue Doppler imaging: correlation with right heart catheterization. Echocardiography. 2008;25:706–11.

    PubMed  Google Scholar 

  198. López-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. Differential strain and velocity generation along the right ventricular free wall in pulmonary hypertension. Can J Cardiol. 2009;25:73–7.

    Google Scholar 

  199. López-Candales A, Dohi K, Bazaz R, Edelman K. Relation of right ventricular free wall mechanical delay to right ventricular dysfunction as determined by tissue Doppler imaging. Am J Cardiol. 2005;96:602–6.

    PubMed  Google Scholar 

  200. López-Candales A, Rajagopalan N, Dohi K, Gulyasy B, Edelman K, Bazaz R. Abnormal right ventricular myocardial strain generation in mild pulmonary hypertension. Echocardiography. 2007;24(6):615–22.

    PubMed  Google Scholar 

  201. Ichikawa K, Dohi K, Sugiura E, Sugimoto T, Takamura T, Ogihara Y, Nakajima H, Onishi K, Yamada N, Nakamura M, Nobori T, Ito M. Ventricular function and dyssynchrony quantified by speckle-tracking echocardiography in patients with acute and chronic right ventricular pressure overload. J Am Soc Echocardiogr. 2013;26:483–92.

    PubMed  Google Scholar 

  202. Takamura T, Dohi K, Onishi K, Sakurai Y, Ichikawa K, Tsuji A, Ota S, Tanabe M, Yamada N, Nakamura M, Nobori T, Ito M. Reversible left ventricular regional non-uniformity quantified by speckle-tracking displacement and strain imaging in patients with acute pulmonary embolism. J Am Soc Echocardiogr. 2011;24:792–802.

    PubMed  Google Scholar 

  203. Sugiura E, Dohi K, Onishi K, Takamura T, Tsuji A, Ota S, Yamada N, Nakamura M, Nobori T, Ito M. Reversible right ventricular regional non-uniformity quantified by speckle-tracking strain imaging in patients with acute pulmonary thromboembolism. J Am Soc Echocardiogr. 2009;22:1353–9.

    PubMed  Google Scholar 

  204. Platz E, Hassanein AH, Shah A, Goldhaber SZ, Solomon SD. Regional right ventricular strain pattern in patients with acute pulmonary embolism. Echocardiography. 2012;29:464–70.

    PubMed  Google Scholar 

  205. Lo A, Stewart P, Younger JF, Atherton J, Prasad SB. Usefulness of right ventricular myocardial strain in assessment of response to thrombolytic therapy in acute pulmonary embolism. Eur J Echocardiogr. 2010;11:892–5.

    PubMed  Google Scholar 

  206. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66:493–6.

    CAS  PubMed  Google Scholar 

  207. Yeh BM, Kurzman P, Foster E, Qayyum A, Joe B, Coakley F. Clinical relevance of retrograde inferior vena cava or hepatic vein opacification during contrast-enhanced CT. AJR Am J Roentgenol. 2004;183:1227–32.

    PubMed  Google Scholar 

  208. Collomb D, Paramelle PJ, Calaque O, et al. Severity assessment of acute pulmonary embolism: evaluation using helical CT. Eur Radiol. 2003;13:1508–14.

    CAS  PubMed  Google Scholar 

  209. Ghaye B, Ghuysen A, Willems V, et al. Severe pulmonary embolism: pulmonary artery clot load scores and cardiovascular parameters as predictors of mortality. Radiology. 2006;239:884–91.

    PubMed  Google Scholar 

  210. Mehta NJ, Jani K, Khan IA. Clinical usefulness and prognostic value of elevated cardiac troponin I levels in acute pulmonary embolism. Am Heart J. 2003;145:821–5.

    CAS  PubMed  Google Scholar 

  211. Stamm JA. Risk stratification for acute pulmonary embolism. Crit Care Clin. 2012;28:301–21.

    PubMed  Google Scholar 

  212. Jiménez D, Aujesky D, Yusen RD. Risk stratification of normotensive patients with acute symptomatic pulmonary embolism. Br J Haematol. 2010;151:415–24.

    PubMed  Google Scholar 

  213. Masotti L, Righini M, Vuilleumier N, Antonelli F, Landini G, Cappelli R, Ray P. Prognostic stratification of acute pulmonary embolism: focus on clinical aspects, imaging, and biomarkers. Vasc Health Risk Manag. 2009;5:567–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Tulevski II, ten Wolde M, van Veldhuisen DJ, Mulder JW, van der Wall EE, Büller HR, Mulder BJ. Combined utility of brain natriuretic peptide and cardiac troponin T may improve rapid triage and risk stratification in normotensive patients with pulmonary embolism. Int J Cardiol. 2007;116:161–6.

    PubMed  Google Scholar 

  215. Lega JC, Lacasse Y, Lakhal L, Provencher S. Natriuretic peptides and troponins in pulmonary embolism: a meta-analysis. Thorax. 2009;64:869–75.

    PubMed  Google Scholar 

  216. Tulevski II, Hirsch A, Sanson BJ, Romkes H, van der Wall EE, van Veldhuisen DJ, Büller HR, Mulder BJ. Increased brain natriuretic peptide as a marker for right ventricular dysfunction in acute pulmonary embolism. Thromb Haemost. 2001;86:1193–6.

    CAS  PubMed  Google Scholar 

  217. Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. Crit Care. 2011;15:R103.

    PubMed Central  PubMed  Google Scholar 

  218. Cavallazzi R, Nair A, Vasu T, Marik PE. Natriuretic peptides in acute pulmonary embolism: a systematic review. Intensive Care Med. 2008;34:2147–56.

    CAS  PubMed  Google Scholar 

  219. Pieralli F, Olivotto I, Vanni S, Conti A, Camaiti A, Targioni G, Grifoni S, Berni G. Usefulness of bedside testing for brain natriuretic peptide to identify right ventricular dysfunction and outcome in normotensive patients with acute pulmonary embolism. Am J Cardiol. 2006;97:1386–90.

    CAS  PubMed  Google Scholar 

  220. Weber DM, Phillips JH. A re-evaluation of electrocardiographic changes accompanying acute pulmonary embolism. Am J Med Sci. 1966;251:381–98.

    CAS  PubMed  Google Scholar 

  221. Panos RJ, Barish RA, Whye Jr DW, Groleau G. The electrocardiographic manifestations of pulmonary embolism. J Emerg Med. 1988;6:301–7.

    CAS  PubMed  Google Scholar 

  222. Chou T. Electrocardiography in clinical practice. 2nd ed. Orlando: Grune Stratton; 1986. p. 309–17.

    Google Scholar 

  223. Sreeram N, Cheriex EC, Smeets JL, Gorgels AP, Wellens HJ. Value of the 12-lead electrocardiogram at hospital admission in the diagnosis of pulmonary embolism. Am J Cardiol. 1994;73:298–303.

    CAS  PubMed  Google Scholar 

  224. Romhilt D, Susilavorn B, Chou T. Unusual electrocardiographic manifestation of pulmonary embolism. Am Heart J. 1970;80:237–41.

    CAS  PubMed  Google Scholar 

  225. Falterman TJ, Martinez JA, Daberkow D, Weiss LD. Pulmonary embolism with ST segment elevation in leads V1 to V4: case report and review of the literature regarding electrocardiographic changes in acute pulmonary embolism. J Emerg Med. 2001;21:255–61.

    CAS  PubMed  Google Scholar 

  226. Goslar T, Podbregar M. Acute ECG ST-segment elevation mimicking myocardial infarction in a patient with pulmonary embolism. Cardiovasc Ultrasound. 2010;8:50.

    PubMed Central  PubMed  Google Scholar 

  227. Chan TC, Vilke GM, Pollack M, Brady WJ. Electrocardiographic manifestations: pulmonary embolism. J Emerg Med. 2001;21:263–70.

    CAS  PubMed  Google Scholar 

  228. Ullman E, Brady WJ, Perron AD, Chan T, Mattu A. Electrocardiographic manifestations of pulmonary embolism. Am J Emerg Med. 2001;19:514–9.

    CAS  PubMed  Google Scholar 

  229. Sostman HD, Stein PD, Gottschalk A, Matta F, Hull R, Goodman L. Acute pulmonary embolism: sensitivity and specificity of ventilation-perfusion scintigraphy in PIOPED II study. Radiology. 2008;246:941–6.

    PubMed  Google Scholar 

  230. The PIOPED Investigators. Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). JAMA. 1990;263:2753–9.

    Google Scholar 

  231. Costello P, Gupta KB. Pulmonary embolism: imaging modalities—V/Q scan, spiral (helical) CT, and MRI. Semin Vasc Med. 2001;1:155–64.

    CAS  PubMed  Google Scholar 

  232. Wittram C. How I, do it: CT pulmonary angiography. Am J Roentgenol. 2007;188:1255–61.

    Google Scholar 

  233. Nikolaou K, Thieme S, Sommer W, Johnson T, Reiser MF. Diagnosing pulmonary embolism: new computed tomography applications. J Thorac Imaging. 2010;25:151–60.

    PubMed  Google Scholar 

  234. Weiss CR, Scatarige JC, Diette GB, Haponik EF, Merriman B, Fishman EK. CT pulmonary angiography is the first-line imaging test for acute pulmonary embolism: a survey of US clinicians. Acad Radiol. 2006;13:434–46.

    PubMed  Google Scholar 

  235. Donohoo JH, Mayo-Smith WW, Pezzullo JA, et al. Utilization patterns and diagnostic yield of 3421 consecutive multidetector row computed tomography pulmonary angiograms in a busy emergency department. J Comput Assist Tomogr. 2008;32:421–5.

    PubMed  Google Scholar 

  236. Prologo JD, Gilkeson RC, Diaz M, et al. CT pulmonary angiography: a comparative analysis of the utilization patterns in emergency department and hospitalized patients between 1998 and 2003. Am J Roentgenol. 2004;183:1093–6.

    Google Scholar 

  237. Weir ID, Drescher F, Cousin D, et al. Trends in use and yield of chest computed tomography with angiography for diagnosis of pulmonary embolism in a Connecticut hospital emergency department. Conn Med. 2010;74:5–9.

    PubMed  Google Scholar 

  238. David S, Beddy P, Babar J, Devaraj A. Evolution of CT pulmonary angiography: referral patterns and diagnostic yield in 2009 compared with 2006. Acta Radiol. 2012;53:39–43.

    PubMed  Google Scholar 

  239. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    PubMed  Google Scholar 

  240. Goldhaber SZ. Echocardiography in the management of pulmonary embolism. Ann Intern Med. 2002;136:691–700.

    PubMed  Google Scholar 

  241. Ten Wolde M, Söhne M, Quak E, Mac Gillavry MR, Büller HR. Prognostic value of echocardiographically assessed right ventricular dysfunction in patients with pulmonary embolism. Arch Intern Med. 2004;164:1685–9.

    PubMed  Google Scholar 

  242. Penaloza A, Roy PM, Kline J. Risk stratification and treatment strategy of pulmonary embolism. Curr Opin Crit Care. 2012;18:318–25.

    PubMed  Google Scholar 

  243. Girard P, Musset D, Parent F, et al. High prevalence of detectable deep venous thrombosis in patients with acute pulmonary embolism. Chest. 1999;116:903–8.

    CAS  PubMed  Google Scholar 

  244. Hull RD, Hirsh J, Carter CJ, et al. Pulmonary angiography, ventilation lung scanning, and venography for clinically suspected pulmonary embolism with abnormal perfusion lung scan. Ann Intern Med. 1983;98:891–9.

    CAS  PubMed  Google Scholar 

  245. Kruit WH, de Boer AC, Sing AK, et al. The significance of venography in the management of patients with clinically suspected pulmonary embolism. J Intern Med. 1991;230:333–9.

    CAS  PubMed  Google Scholar 

  246. Perrier A, Desmarais S, Goehring C, et al. D-dimer testing for suspected pulmonary embolism in outpatients. Am J Respir Crit Care Med. 1997;156:492–6.

    CAS  PubMed  Google Scholar 

  247. Turkstra F, Kuijer PM, van Beek EJ, et al. Diagnostic utility of ultrasonography of leg veins in patients suspected of having pulmonary embolism. Ann Intern Med. 1997;126:775–81.

    CAS  PubMed  Google Scholar 

  248. Gorham LW. A study of pulmonary embolism: two the mechanism of death based on a clinical pathological investigation of 100 cases of massive and 285 cases of minor embolism of the pulmonary artery. Arch Intern Med. 1961;108:76–90.

    Google Scholar 

  249. Del Guercio LRM, Cohn JD, Feins NR. Pulmonary embolism shock: physiologic basis of a bedside screening test. JAMA. 1960;196:751–6.

    Google Scholar 

  250. Urokinase pulmonary embolism trial. Phase 1 results: a cooperative study. JAMA. 1970;214:2163–72.

    Google Scholar 

  251. Alpert JS, Smith R, Carlson J, et al. Mortality in patients treated for pulmonary embolism. JAMA. 1976;236:1477–80.

    CAS  PubMed  Google Scholar 

  252. Calder KK, Herbert M, Henderson SO. The mortality of untreated pulmonary embolism in emergency department patients. Ann Emerg Med. 2005;45:302–10.

    PubMed  Google Scholar 

  253. McIntyre KM, Sasahara AA. Correlation of pulmonary photoscan and angiogram as measures of the severity of pulmonary embolic involvement. J Nucl Med. 1971;12:732–8.

    CAS  PubMed  Google Scholar 

  254. McDonald IG, Hirsh J, Hale GS, et al. Major pulmonary embolism, a correlation of clinical findings, haemodynamics, pulmonary angiography, and pathological physiology. Br Heart J. 1972;34:356–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Dalen JE, Haynes FW, Hoppin FG, et al. Cardiovascular responses to experimental pulmonary embolism. Am J Cardiol. 1967;20:3–9.

    Google Scholar 

  256. McIntyre KM, Sasahara AA. Hemodynamic and ventricular responses to pulmonary embolism. Prog Cardiovasc Dis. 1974;17:175–90.

    CAS  PubMed  Google Scholar 

  257. Parker BM, Smith JR. Pulmonary embolism and infarction: a review of the physiologic consequences of pulmonary artery obstruction. Am J Med. 1958;24:402–27.

    CAS  PubMed  Google Scholar 

  258. Stein M, Levy SE. Reflex and humoral responses to pulmonary embolism. Prog Cardiovasc Dis. 1974;17:167–74.

    CAS  PubMed  Google Scholar 

  259. Malik AB. Pulmonary microembolism. Physiol Rev. 1983;63:1114–207.

    CAS  PubMed  Google Scholar 

  260. Alpert JS, Godtfredsen J, Ockene IS, et al. Pulmonary hypertension secondary to minor pulmonary embolism. Chest. 1978;73:795–7.

    CAS  PubMed  Google Scholar 

  261. Calvin Jr JE, Baer RW, Glantz SA. Pulmonary artery constriction produces a greater right ventricular dynamic afterload than lung microvascular injury in the open chest dog. Circ Res. 1985;56:40–56.

    PubMed  Google Scholar 

  262. Stein PD, Sabbah HN, Anbe DT, et al. Performance of the failing and nonfailing right ventricle of patients with pulmonary hypertension. Am J Cardiol. 1979;44:1050–5.

    CAS  PubMed  Google Scholar 

  263. Calvin JE, Quinn B. Right ventricular pressure overload during acute lung injury: cardiac mechanisms and the pathophysiology of right ventricular systolic dysfunction. J Crit Care. 1989;4:251–65.

    Google Scholar 

  264. Calvin Jr JE. Acute right heart failure: pathophysiology, recognition, and pharmacological management. J Cardiothorac Vasc Anesth. 1991;5:507–13.

    PubMed  Google Scholar 

  265. Taylor RR, Covell JW, Sonnenblick EH, et al. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol. 1967;213:711–8.

    CAS  PubMed  Google Scholar 

  266. Stein PD, Fowler SE, Goodman LR, Gottschalk A, Hales CA, Hull RD, Leeper Jr KV, Popovich Jr J, Quinn DA, Sos TA, Sostman HD, Tapson VF, Wakefield TW, Weg JG, Woodard PK, PIOPED II Investigators. Multidetector computed tomography for acute pulmonary embolism. N Engl J Med. 2006;354:2317–27.

    CAS  PubMed  Google Scholar 

  267. Martins SR. Pulmonary CT, angiography in pulmonary embolism: beyond diagnosis. Rev Port Cardiol. 2012;31:697–9.

    PubMed  Google Scholar 

  268. Apfaltrer P, Bachmann V, Meyer M, Henzler T, Barraza JM, Gruettner J, Walter T, Schoepf UJ, Schoenberg SO, Fink C. Prognostic value of perfusion defect volume at dual energy CTA in patients with pulmonary embolism: correlation with CTA obstruction scores, CT parameters of right ventricular dysfunction and adverse clinical outcome. Eur J Radiol. 2012;81:3592–7.

    PubMed  Google Scholar 

  269. Kang DK, Sun JS, Park KJ, Lim HS. Usefulness of combined assessment with computed tomographic signs of right ventricular dysfunction and cardiac troponin T for risk stratification of acute pulmonary embolism. Am J Cardiol. 2011;108:133–40.

    PubMed  Google Scholar 

  270. Becattini C, Vedovati MC, Agnelli G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation. 2007;116:427–33.

    CAS  PubMed  Google Scholar 

  271. Jiménez D, Uresandi F, Otero R, Lobo JL, Monreal M, Martí D, Zamora J, Muriel A, Aujesky D, Yusen RD. Troponin-based risk stratification of patients with acute nonmassive pulmonary embolism: systematic review and metaanalysis. Chest. 2009;136:974–82.

    PubMed  Google Scholar 

  272. Hunt JM, Bull TM. Clinical review of pulmonary embolism: diagnosis, prognosis, and treatment. Med Clin North Am. 2011;95:1203–22.

    PubMed  Google Scholar 

  273. Stergiopoulos K, Bahrainy S, Strachan P, Kort S. Right ventricular strain rate predicts clinical outcomes in patients with acute pulmonary embolism. Acute Card Care. 2011;13:181–8.

    PubMed  Google Scholar 

  274. Jiménez D, Aujesky D, Moores L, Gómez V, Martí D, Briongos S, Monreal M, Barrios V, Konstantinides S, Yusen RD. Combinations of prognostic tools for identification of high-risk normotensive patients with acute symptomatic pulmonary embolism. Thorax. 2011;66:75–81.

    PubMed  Google Scholar 

  275. Bellofiore A, Roldán-Alzate A, Besse M, Kellihan HB, Consigny DW, Francois CJ, Chesler NC. Impact of acute pulmonary embolization on arterial stiffening and right ventricular function in dogs. Ann Biomed Eng. 2013;41:195–204.

    PubMed Central  PubMed  Google Scholar 

  276. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120:992–1007.

    PubMed  Google Scholar 

  277. Kussmaul WG, Noordergraaf A, Laskey WK. Right ventricular-pulmonary arterial interactions. Ann Biomed Eng. 1992;20:63–80.

    CAS  PubMed  Google Scholar 

  278. Parmley WW, Tyberg JV, Glantz SA. Cardiac dynamics. Annu Rev Physiol. 1977;39:277–99.

    CAS  PubMed  Google Scholar 

  279. Piene H. Pulmonary arterial impedance and right ventricular function. Physiol Rev. 1986;66:606–52.

    CAS  PubMed  Google Scholar 

  280. Milnor WR, Bergel DH, Bargainer JD. Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ Res. 1966;19:467–80.

    CAS  PubMed  Google Scholar 

  281. Piene H, Sund T. Flow and power output of right ventricle facing load with variable input impedance. Am J Physiol. 1979;237:H125–30.

    CAS  PubMed  Google Scholar 

  282. O’Rourke MF. Vascular impedance in studies of arterial and cardiac function. Physiol Rev. 1982;62:570–623.

    PubMed  Google Scholar 

  283. Giannitsis E, Muller-Bardorff M, Kurowski V, et al. Independent prognostic value of cardiac troponin T in patients with confirmed pulmonary embolism. Circulation. 2000;102:211–7.

    CAS  PubMed  Google Scholar 

  284. Konstantinides S, Geibel A, Olschewski M, et al. Importance of cardiac troponins I and T in risk stratification of patients with acute pulmonary embolism. Circulation. 2002;106:1263–8.

    CAS  PubMed  Google Scholar 

  285. Kucher N, Goldhaber SZ. Cardiac biomarkers for risk stratification of patients with acute pulmonary embolism. Circulation. 2003;108:2191–4.

    PubMed  Google Scholar 

  286. Kucher N, Goldhaber SZ. Risk stratification of acute pulmonary embolism. Semin Thromb Hemost. 2006;32:838–47.

    PubMed  Google Scholar 

  287. Meyer T, Binder L, Hruska N, Luthe H, Buchwald AB. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J Am Coll Cardiol. 2000;36:1632–6.

    CAS  PubMed  Google Scholar 

  288. López-Candales A, Edelman K, Candales MD. Right ventricular apical contractility in acute pulmonary embolism: the McConnell sign revisited. Echocardiography. 2010;27:614–20.

    PubMed  Google Scholar 

  289. Descotes-Genon V, Chopard R, Morel M, Meneveau N, Schiele F, Bernard Y. Comparison of right ventricular systolic function in patients with low risk and intermediate-to-high risk pulmonary embolism: a two-dimensional strain imaging study. Echocardiography. 2013;30:301–8.

    PubMed  Google Scholar 

  290. Gorcsan 3rd J, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol. 2011;58:1401–13.

    PubMed  Google Scholar 

  291. Huang SJ, Orde S. From speckle tracking echocardiography to torsion: research tool today, clinical practice tomorrow. Curr Opin Crit Care. 2013;19:250–7.

    PubMed  Google Scholar 

  292. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47:789–93.

    PubMed  Google Scholar 

  293. Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ, Rosen BD, Lima JA, Torp H, Ihlen H, Smiseth OA. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.

    PubMed  Google Scholar 

  294. López-Candales A, Dohi K, Rajagopalan N, Suffoletto M, Murali S, Gorcsan 3rd J, Edelman K. Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class. Cardiovasc Ultrasound. 2005;3(1):23.

    PubMed Central  PubMed  Google Scholar 

  295. Rajagopalan N, Dohi K, Simon MA, Suffoletto M, Edelman K, Murali S, López-Candales A. Right ventricular dyssynchrony in heart failure: a tissue Doppler imaging study. J Card Fail. 2006;12:263–7.

    PubMed  Google Scholar 

  296. Dohi K, Onishi K, Gorcsan 3rd J, López-Candales A, Takamura T, Ota S, Yamada N, Ito M. Role of radial strain and displacement imaging to quantify wall motion dyssynchrony in patients with left ventricular mechanical dyssynchrony and chronic right ventricular pressure overload. Am J Cardiol. 2008;101:1206–12.

    PubMed  Google Scholar 

  297. Taccardi B, Lux RL, Ershler PR, et al. Anatomical architecture and electrical activity of the heart. Acta Cardiol. 1997;52:91–105.

    CAS  PubMed  Google Scholar 

  298. Torrent-Guasp F, Buckberg GD, Clemente C, et al. The structure and function of the helical heart and its buttress wrapping: I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg. 2001;134:301–19.

    Google Scholar 

  299. Sullivan DM, Watts JA, Kline JA. Biventricular cardiac dysfunction after acute massive pulmonary embolism in the rat. J Appl Physiol. 2001;90:1648–56.

    CAS  PubMed  Google Scholar 

  300. Chua JH, Zhou W, Ho JK, Patel NA, Mackensen GB, Mahajan A. Acute right ventricular pressure overload compromises left ventricular function by altering septal strain and rotation. J Appl Physiol. 2013;115(2):186–93.

    PubMed  Google Scholar 

  301. López-Candales A, Bazaz R, Edelman K, Gulyasy B. Altered early left ventricular diastolic wall velocities in pulmonary hypertension: a tissue Doppler study. Echocardiography. 2009;26:1159–66.

    PubMed  Google Scholar 

  302. López-Candales A, Shaver J, Edelman K, Candales MD. Temporal differences in ejection between right and left ventricles in chronic pulmonary hypertension: a pulsed Doppler study. Int J Cardiovasc Imaging. 2012;28:1943–50.

    PubMed  Google Scholar 

  303. Egermayer P, Town GI. The clinical significance of pulmonary embolism: uncertainties and implications for treatment: a debate. J Intern Med. 1997;241:5–10.

    CAS  PubMed  Google Scholar 

  304. Freiman DG, Suyemoto J, Wessler S. Frequency of pulmonary thromboembolism in man. N Engl J Med. 1965;272:1278–80.

    CAS  PubMed  Google Scholar 

  305. Havig O. Deep vein thrombosis and pulmonary embolism: an autopsy study with multiple regression analysis of possible risk factors. Acta Chir Scand. 1977;478(Suppl):1–108.

    CAS  Google Scholar 

  306. Wagenvoort CA. Pathology of pulmonary thromboembolism. Chest. 1995;107(Suppl):10S–7.

    CAS  PubMed  Google Scholar 

  307. Egermayer P, Town GI, Ardagh M. Pleuritic pain and pulmonary embolism in the emergency department: diagnostic and treatment issues. N Z Med J. 1997;110:197–9.

    CAS  PubMed  Google Scholar 

  308. Stein PD, Hull RD, Raskob GE. Withholding treatment in patients with acute pulmonary embolism who have a high risk of bleeding and negative serial noninvasive leg tests. Am J Med. 2000;109:301–6.

    CAS  PubMed  Google Scholar 

  309. Dalen JE, Alpert JS. Natural history of pulmonary embolism. Prog Cardiovasc Dis. 1975;17:259–70.

    CAS  PubMed  Google Scholar 

  310. Benotti JR, Dalen JR. The natural history of pulmonary embolism. Clin Chest Med. 1984;5:403–10.

    CAS  PubMed  Google Scholar 

  311. Murphy ML, Bulloch RT. Factors influencing the restoration of blood flow following pulmonary embolization as determined by angiography and scanning. Circulation. 1968;38:1116–26.

    CAS  PubMed  Google Scholar 

  312. Walker RH, Goodwin J, Jackson JA. Resolution of pulmonary embolism. Br Med J. 1970;4:135–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  313. Tow DE, Wagner HN. Recovery of pulmonary arterial blood flow in patients with pulmonary embolism. N Engl J Med. 1967;2:76–9.

    Google Scholar 

  314. Chait A, Summers D, Krasnow N, et al. Observations on the fate of large pulmonary emboli. Am J Roentgenol. 1967;100:364–73.

    CAS  Google Scholar 

  315. Fred HL, Axelrad MA, Lewis JM, et al. Rapid resolution of pulmonary thromboemboli in man: an angiographic study. JAMA. 1966;196:1137–9.

    CAS  PubMed  Google Scholar 

  316. Torbicki A, Perrier A, Konstantinides SV, Agnelli G, Galie N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP. Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J. 2008;29:2276–315.

    CAS  PubMed  Google Scholar 

  317. Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, Nelson ME, Wells PS, Gould MK, Dentali F, Crowther M, Kahn SR. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e419S–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  318. Meneveau N, Seronde MF, Blonde MC, Legalery P, Didier-Petit K, Briand F, Caulfield F, Schiele F, Bernard Y, Bassand JP. Management of unsuccessful thrombolysis in acute massive pulmonary embolism. Chest. 2006;129:1043–50.

    PubMed  Google Scholar 

  319. Daniels LB, Parker JA, Patel SR, Grodstein F, Goldhaber SZ. Relation of duration of symptoms with response to thrombolytic therapy in pulmonary embolism. Am J Cardiol. 1997;80:184–8.

    CAS  PubMed  Google Scholar 

  320. Kuo WT, van den Bosch MA, Hofmann LV, Louie JD, Kothary N, Sze DY. Catheter-directed embolectomy, fragmentation, and thrombolysis for the treatment of massive pulmonary embolism after failure of systemic thrombolysis. Chest. 2008;134:250–4.

    PubMed  Google Scholar 

  321. Chauhan MS, Kawamura A. Percutaneous rheolytic thrombectomy for large pulmonary embolism: a promising treatment option. Catheter Cardiovasc Interv. 2007;70:121–8.

    PubMed  Google Scholar 

  322. Eid-Lidt G, Gaspar J, Sandoval J, de los Santos FD, Pulido T, González Pacheco H, Martínez-Sánchez C. Combined clot fragmentation and aspiration in patients with acute pulmonary embolism. Chest. 2008;134:54–60.

    PubMed  Google Scholar 

  323. Hamel E, Pacouret G, Vincentelli D, Forissier JF, Peycher P, Pottier JM, Charbonnier B. Thrombolysis or heparin therapy in massive pulmonary embolism with right ventricular dilation: results from a 128-patient monocenter registry. Chest. 2001;120:120–5.

    CAS  PubMed  Google Scholar 

  324. Vieillard-Baron A, Page B, Augarde R, Prin S, Qanadli S, Beauchet A, Dubourg O, Jardin F. Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med. 2001;27:1481–6.

    CAS  PubMed  Google Scholar 

  325. Kostrubiec M, Pruszczyk P, Bochowicz A, Pacho R, Szulc M, Kaczynska A, Styczynski G, Kuch-Wocial A, Abramczyk P, Bartoszewicz Z, Berent H, Kuczynska K. Biomarker-based risk assessment model in acute pulmonary embolism. Eur Heart J. 2005;26:2166–72.

    CAS  PubMed  Google Scholar 

  326. Kucher N, Printzen G, Doernhoefer T, Windecker S, Meier B, Hess OM. Low pro-brain natriuretic peptide levels predict benign clinical outcome in acute pulmonary embolism. Circulation. 2003;107:1576–8.

    PubMed  Google Scholar 

  327. Ghuysen A, Ghaye B, Willems V, Lambermont B, Gerard P, Dondelinger RF, D’Orio V. Computed tomographic pulmonary angiography and prognostic significance in patients with acute pul- monary embolism. Thorax. 2005;60:956–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  328. ten Wolde M, Tulevski II, Mulder JW, Sohne M, Boomsma F, Mulder BJ, Buller HR. Brain natriuretic peptide as a predictor of adverse outcome in patients with pulmonary embolism. Circulation. 2003;107:2082–4.

    PubMed  Google Scholar 

  329. Pruszczyk P, Kostrubiec M, Bochowicz A, Styczynski G, Szulc M, Kurzyna M, Fijalkowska A, Kuch-Wocial A, Chlewicka I, Torbicki A. N-terminal pro-brain natriuretic peptide in patients with acute pulmonary embolism. Eur Respir J. 2003;22:649–53.

    CAS  PubMed  Google Scholar 

  330. Huang W, Yen T, McLaurine M, Bledsoe G. Morphometry of the human pulmonary vasculature. J Appl Physiol. 1996;81:2123–33.

    CAS  PubMed  Google Scholar 

  331. Ryu JH, Olson EJ, Pellikka PA. Clinical recognition of pulmonary embolism: problem of unrecognized and asymptomatic cases. Mayo Clin Proc. 1998;73:873–9.

    CAS  PubMed  Google Scholar 

  332. Chhabra A, et al. Pulmonary embolism in segmental and subsegmental arteries: optimal technique, imaging appearances, and potential pitfalls in multidetector CT. Appl Radiol. 2007;36(2):34–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel López-Candales MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

López-Candales, A. (2014). Pulmonary Embolism. In: Gaine, S., Naeije, R., Peacock, A. (eds) The Right Heart. Springer, London. https://doi.org/10.1007/978-1-4471-2398-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2398-9_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2397-2

  • Online ISBN: 978-1-4471-2398-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics