Skip to main content

5.4GHz, 0.35μm BiCMOS FBAR-Based Single-Ended and Balanced Oscillators in Above-IC Technology

  • Chapter
  • First Online:
MEMS-based Circuits and Systems for Wireless Communication

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

For the last few years, one of the main challenges in circuit design has been the integration of frequency references in applications where phase noise requirements are very stringent. To overcome the usual limitation of (Bi)CMOS integrated circuits (ICs) phase noise, mainly due to the low Q-factor of standard integrated passive devices (R, L, C) inherent to low resistivity substrate, a solution has been to use BAW resonators. Indeed, thin film BAW resonators based on piezoelectric material, generally AlN or ZnO, sandwiched between two metallic electrodes, exhibit a high Q-factor, can handle high power, and can operate at high frequencies (above 10 GHz Hz), while keeping a small size and being compatible with (Bi)CMOS IC processes. The very first oscillators using FBAR and SMR resonators were designed with separately wire-bonded resonators connected to the IC circuit. This chapter deals with the world premiere realization of two 5-GHz FBAR-based oscillators, where the FBAR is directly integrated above the IC with some further process steps, compatible with (Bi)CMOS. A single-ended and a balanced version were designed. The circuits were implemented in a 0.35-μm SiGe BiCMOS process from AMI Semiconductor. From the obtained results, we show that post-processing the FBAR directly over the IC eliminates much of the parasitics and modelling issues associated with bondwires. Furthermore, it reduces the circuit area. The single-ended and balanced oscillators are based on the Colpitts configuration and achieve respectively a state-of-the-art phase noise performance (at the time of design) of − 117. 7 d b c Hz and − 121 d b c Hz at 100 K Hz offset from the 5.4-GHz carrier frequency. The balanced version allows direct driving of balanced dividers and mixers without the need of a single-ended to balanced converter. Some comparisons are also made with standard LC balanced oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More exactly “analog transmission of digital information.”

References

  1. K. Lakin, IEEE Microw. Mag. 4(4), 61 (2003). DOI 10.1109/MMW.2003.1266067

    Google Scholar 

  2. Y.H. Chee, A.M. Niknejad, J. Rabaey, in Proceedings of the Digest of Papers Radio Frequency integrated Circuits (RFIC) Symposium 2005 IEEE, 2005, pp. 123–126. DOI 10.1109/RFIC.2005.1489606

    Google Scholar 

  3. A.P.S. Khanna, E. Gane, T. Chong, in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, vol. 2, 2003, pp. 717–720

    Google Scholar 

  4. Y. Park, S. Pinkett, J.S. Kenney, W.D. Hunt, in Proceedings of the IEEE Ultrasonics Symposium, vol. 1, 2001, pp. 839–842. DOI 10.1109/ULTSYM.2001.991850

    Google Scholar 

  5. M. Aissi, E. Tournier, M.A. Dubois, G. Parat, R. Plana, in Proceedings of the IEEE International Conference Digest of Technical Papers Solid-State Circuits, 2006, pp. 1228–1235. DOI 10.1109/ISSCC.2006.1696169

    Google Scholar 

  6. M. Aissi, E. Tournier, M.A. Dubois, C. Billard, H. Ziad, R. Plana, in Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, p. 4pp. DOI 10.1109/RFIC.2006.1651082

    Google Scholar 

  7. M.A. Dubois, J.F. Carpentier, P. Vincent, C. Billard, G. Parat, C. Muller, P. Ancey, P. Conti, IEEE J. Solid State Circ. 41(1), 7 (2006). DOI 10.1109/JSSC. 2005.858627

    Google Scholar 

  8. Supplement to ieee standard for information technology telecommunications and information exchange between systems – local and metropolitan area networks – specific requirements. part 11: wireless lan medium access control (mac) and physical layer (phy) specifications: high-speed physical layer in the 5 ghz band, 30 Dec 1999

    Google Scholar 

  9. J. van der Tang, D. Kasperkovitz, Proc. ISCAS 2000 Geneva 2000 IEEE Int. Symp. Circ. Syst. 2000 DOI 10.1109/ISCAS.2000.856383

    Google Scholar 

  10. M.E. Frerking, Crystal Oscillator Design and Temperature Compensation (Van Nostrand, New York, 1978)

    Book  Google Scholar 

  11. D.B. Leeson, Proc. IEEE 54(2), 329 (1966)

    Article  Google Scholar 

  12. K. Van Dyke, Proc. IRE 16(6), 742 (1928)

    Article  Google Scholar 

  13. I. Larson, J. D., P.D. Bradley, S. Wartenberg, R.C. Ruby, in Proceedings of the IEEE Ultrasonics Symposium, vol. 1, 2000, pp. 863–868. DOI 10.1109/ULTSYM.2000. 922679

    Google Scholar 

  14. J.F. Rosenbaum, Bulk Acoustic Wave Theory and Devices (Arctech House, Norwood, Massachusetts, 1988)

    MATH  Google Scholar 

  15. R. Ruby, P. Bradley, D. Clark, D. Feld, T. Jamneala, K. Wang, in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, vol. 2, 2004, pp. 931–934. DOI 10.1109/MWSYM.2004.1339128

    Google Scholar 

  16. K.M. Lakin, in Proceedings of the IEEE Ultrasonics Symposium, vol. 2, 1999, pp. 895–906. DOI 10.1109/ULTSYM.1999.849135

    Google Scholar 

  17. O. Llopis, J. Juraver, M. Regis, M. Chaubet, J. Graffeuil, Frequency Control Symposium and Exhibition, 2000. Proceedings of the 2000 IEEE/EIA International pp. 511–515 (2000). DOI 10.1109/FREQ.2000.887409

    Google Scholar 

  18. H. Jacobsson, S. Gevorgian, M. Mokhtari, B. Hansson, C. Hedenas, T. Lewin, W. Rabe, A. Schuppen, in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, vol. 2, 2000, pp. 723–726. DOI 10.1109/MWSYM.2000.863284

    Google Scholar 

  19. M. Zannoth, B. Kolb, J. Fenk, R. Weigel, IEEE J. Solid State Circ. 33(12), 1987 (1998). DOI 10.1109/4.735539

    Google Scholar 

Download references

Acknowledgements

The author would like to thank all the participants of the MARTINA project and especially AMI Semiconductor (Belgium) for the IC technology, LETI (France) and CSEM (Switzerland) for BAW post-processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Tournier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tournier, É. (2013). 5.4GHz, 0.35μm BiCMOS FBAR-Based Single-Ended and Balanced Oscillators in Above-IC Technology. In: Enz, C., Kaiser, A. (eds) MEMS-based Circuits and Systems for Wireless Communication. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8798-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8798-3_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8797-6

  • Online ISBN: 978-1-4419-8798-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics