Skip to main content

Sensing Human Walking: Algorithms and Techniques for Extracting and Modeling Locomotion

  • Chapter
  • First Online:
Human Walking in Virtual Environments

Abstract

This chapter reports the most popular methods used to evaluate the main properties of human walking. We will mainly focus on: global parameters (such as step length, frequency, gait asymmetry and regularity), kinematic parameters (such as joint angles depending on time), dynamic values (such as the ground reaction force and the joint torques) and muscle activity (such as muscle tension). A large set of sensors have been introduced in order to analyze human walking in biomechanics and other connected domains such as robotics, human motion sciences, computer animation... Among all these sensors, we will focus on: mono-point sensors (such as accelerometers), multi-point sensors (such as flock of sensors, opto-electronic systems and video analysis), and dynamic sensors (such as force plates or electromyographic sensors). For the most popular systems, we will describe the most popular methods and algorithms used to compute the parameters described above. All along the chapter we will explain how these algorithms could provide original methods for helping people to design natural navigation in VR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amarantini D, Rao G, Berton E (2010) A two-step EMG-and-optimization process to estimate muscle force during dynamic movement. J Biomech 43(9):1827–1830

    Article  Google Scholar 

  2. Auvinet B, Berrut G, Touzard C, Moutel L, Collet N, Chaleil D, Barrey E (2002) Reference data for normal subjects obtained with an accelerometric device. Gait Posture 16:124–134

    Article  Google Scholar 

  3. Bodenheimer B, Rose C, Rosenthal S, Pella J (1997) The process of motion capture: dealing with the data. In: Thalmann D, van de Panne M (eds) Eurographics workshop on computer animation and, simulation. Springer-Verlag, Wien, pp 3–18

    Google Scholar 

  4. Brault S, Bideau B, Craig C, Kulpa R (2010) Balancing deceit and disguise: how to successfully fool the defender in a 1 versus 1 situation in rugby. Hum Mov Sci 29(3):412–425

    Article  Google Scholar 

  5. Chang LY, Pollard NS (2007) Constrained least-squares optimization for robust estimation of center of rotation. J Biomech 40:1392–1400

    Article  Google Scholar 

  6. Delp SL (1990) Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. PhD thesis, Stanford University, Stanford, California

    Google Scholar 

  7. Ehrig RM, Taylor GN, Duda WR, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39:2798–2809

    Article  Google Scholar 

  8. Faure F, Debunne G, Cani-Gascuel MP, Multon F (1997) Dynamic analysis of human walking (1997). In: Proceedings of eurographics workshop on computer animation and, simulation, pp 95–107

    Google Scholar 

  9. Gamage SSHU, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35:87–93

    Article  Google Scholar 

  10. Herda L, Fua P, Plaenkers R, Boulic R, Thalmann D (2001) Using skeleton-based tracking to increase the reliability of optical motion capture. Hum Mov Sci J 20(3):313–341

    Article  Google Scholar 

  11. Kavanagh J, Barett R, Morrison R (2005) Age-related differences in head and trunk coordination during walking. Hum Mov Sci 24:574–587

    Article  Google Scholar 

  12. Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32(1):99–103

    Article  Google Scholar 

  13. Lécuyer A, Marchal M, Hamelin A, Wolinski D, Fontana F, Civolani M, Papetti S, Serafin S (2011) Shoes-your-style: changing sound of footsteps to create new walking experiences. In: Proceedings of workshop on sound and music computing for human-computer interaction, CHItaly, Alghero, 13–16 Sept 2011

    Google Scholar 

  14. Lee SJ, Hidler J (2007) Biomechanics of overground versus treadmill walking in healthy individuals. J Appl Physiol 104(3):747–755

    Google Scholar 

  15. Lu TW, O’connor JJ (1999) Bone position estimation from skin marker coordinates using global optimisation with joint constraints. J Biomech 32(2):129–134

    Article  Google Scholar 

  16. Luh J, Walker M, Paul R (1980) On-line computational scheme for mechanical manipulators. Trans ASME J Dyn Syst Meas Contr 102(2):69–76

    Article  MathSciNet  Google Scholar 

  17. Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc 45:313–320

    Google Scholar 

  18. Makshous M (1999) Improvements, validation and adaptation of a shoulder model. PhD thesis, Chalmers University of Technology, Göteborg

    Google Scholar 

  19. Marchal M, Pettré J, Lécuyer A (2011) Joyman: a human-scale joystick for navigating in virtual worlds. In: Proceedings of IEEE symposium on 3D user, interface 3DUI’11, pp 19–26

    Google Scholar 

  20. Marey EJ (1873) La machine animale, locomotion terrestre et aérienne. Germer Baillère, Paris

    Google Scholar 

  21. Menz H, Lord S, Fitzpatrick R (2003) Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture 18(1):35–46

    Article  Google Scholar 

  22. Molet T, Boulic R, Thalmann D (1999) Human motion capture driven by orientation measurements. Presence 8:187–203

    Article  Google Scholar 

  23. Nigg BM, Herzog W (1999) Biomechanics of the musculo-skeletal system. Wiley, New York, p 349

    Google Scholar 

  24. Olivier AH, Crétual A (2007) Velocity/curvature relations along a single turn in human locomotion. Neurosci Lett 412(2):148–153

    Article  Google Scholar 

  25. Orendurff M, Segal A, Berge J, Flick K, Spanier D, Klute G (2006) The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. Gait Posture 23(1):106–111

    Article  Google Scholar 

  26. Pettré J, Marchal M, Siret O, de la Rivière J-B, Lécuyer A (2011) Joyman: an immersive and entertaining interface for virtual locomotion. ACM SIGGRAPH Asia emerging technologies. Hong-Kong, 12–15 Dec 2011

    Google Scholar 

  27. Pontonnier C, Dumont G (2010) From motion capture to muscle forces aiming at improving ergonomics of working stations. Virtual Phys Prototyp 5:113–122

    Article  Google Scholar 

  28. Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various tasks in humans. II.Patients with bilateral vestibular deficits. Exp Brain Res 85(1):208–217

    Article  Google Scholar 

  29. Reed M, Manary M, Schneider L (1999) Methods for measuring and representing automobile occupant posture. In: Proceedings of international congress and exposition, Detroit, Michigan, March 1–4

    Google Scholar 

  30. Sadeghi H (2003) Local or global asymmetry in gait of people without im-pairments. Gait Posture 17(3):197–204

    Article  Google Scholar 

  31. Schellenbach M, Lövdén M, Verrel J, Krüger A, Lindenberger U (2010) Adult age differences in familiarization to treadmill walking within virtual environments. Gait Posture 31:295–299

    Article  Google Scholar 

  32. Sereig A, Arvikar R (1989) Biomechanical analysis of the musculoskeletal structure for medicine and sports. J Anat 167:243–244

    Google Scholar 

  33. Silaghi MC, Plaenkers R, Boulic R, Fua P, Thalmann D (1998) Local and global skeleton fitting techniques for optical motion capture. In: Magnenat Thalmann N, Thalmann D (eds) Modeling and motion capture techniques for virtual environments, lecture notes in artificial intelligence, No1537, CAPTECH 1998. Springer, Geneva, pp 26–40

    Google Scholar 

  34. Taylor M, Dabnichki P, Strike S (2005) A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci 24(4):558–573

    Article  Google Scholar 

  35. Terziman L, Lécuyer A, Hillaire S, Wiener J (2009) Can camera motions improve the perception of traveled distance in virtual environments? In: IEEE international conference on virtual reality (IEEE VR), Lafayette, US

    Google Scholar 

  36. Terziman L, Marchal M, Emily M, Multon F, Arnaldi A, Lécuyer A (2010) Shake-your-head: revisiting walking-in-place for desktop virtual reality. In: Proceedings of the ACM symposium on virtual reality software and technology, Hong Kong, pp 27–34

    Google Scholar 

  37. Terziman L, Marchal M, Multon F, Arnaldi B, Lécuyer A (2012) The king-kong effects: improving sensation of walking in VR with visual and tactile vibrations at each step. In: Proceedings of the IEEE symposium on 3D user, interfaces 2012, Orange County, USA, pp19–26

    Google Scholar 

  38. Vaughan CL, Davis BL, O’Connor JC (1992) Dynamics of human gait. Human kinetics. Champaign, Illinois

    Google Scholar 

  39. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima D, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35(4):543–548

    Article  Google Scholar 

  40. Wu G, van der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992

    Article  Google Scholar 

  41. Yin k, Loken k, van de Panne M (2007) SIMBICON: simple biped locomotion control. ACM Trans Graph 26(3):Article 105

    Article  Google Scholar 

  42. Zordan VB, Hodgins JK (1999) Tracking and modifying upper-body human motion data with dynamic simulation. In: Computer animation and simulation ’99, eurographics, pp 13–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Multon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Multon, F. (2013). Sensing Human Walking: Algorithms and Techniques for Extracting and Modeling Locomotion. In: Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds) Human Walking in Virtual Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8432-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8432-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8431-9

  • Online ISBN: 978-1-4419-8432-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics