Skip to main content

Combinatorial Optimization in Data Mining

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization

Abstract

This chapter presents data mining techniques that are formulated as combinatorial optimization problems together with their applications. There are a number of cases where fundamental data mining tool is not combinatorial in nature, yet widely used special-purpose combinatorial extensions exist. For the sake of completeness, these fundamental tools are also discussed in detail before the extensions with underlying combinatorial optimization problems. A number of computationally challenging data mining algorithms that have non-convex formulations are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ∗ This work is supported by University of Houston New Faculty Research Grant.

  2. 2.

    An exact equality for balancing constraint is likely to lead to infeasible solutions depending on the number of instances and ratios. Therefore, a subtle adjustment is usually necessary to ensure feasibility.

Recommended Reading

  1. J. Abello, M.G.C. Resende, S. Sudarsky, Massive quasi-clique detection, in LATIN 2002: Theoretical Informatics (Springer, Berlin/New York, 2002), pp. 598–612

    Google Scholar 

  2. S. Alexe, E. Blackstone, P. Hammer, H. Ishwaran, M. Lauer, C. Snader, Coronary risk prediction by logical analysis of data. Ann. Oper. Res. 119, 15–42 (2003)

    MATH  Google Scholar 

  3. D. Aloise, A. Deshpande, P. Hansen, P. Popat, NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75, 245–248 (2009)

    Google Scholar 

  4. D. Arthur, S. Vassilvitskii, How slow is the k-means method? in Proceedings of the 22nd Annual Symposium on Computational Geometry (ACM, New York, 2006), pp. 144–153

    Google Scholar 

  5. B. Balasundaram, S. Butenko, I.V. Hicks, Clique relaxations in social network analysis: the maximum k-plex problem. Oper. Res. 59, 133–142 (2011)

    MathSciNet  MATH  Google Scholar 

  6. G.H. Ball, D.J. Hall, ISODATA, a novel method of data analysis and pattern classification. Technical report, Stanford Research Institute, Menlo Park, CA, 1965

    Google Scholar 

  7. A. Banerjee, S. Merugu, I.S. Dhillon, J. Ghosh, Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  8. A. Baraldi, P. Blonda, A survey of fuzzy clustering algorithms for pattern recognition – part II. IEEE Trans. Syst. Man Cybern. B 29(6), 786–801 (1999)

    Google Scholar 

  9. M. Belkin, I. Matveeva, P. Niyogi, Regularization and semi-supervised learning on large graphs. Learn. Theory 3120, 624–638 (2004)

    MathSciNet  Google Scholar 

  10. A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, Z. Yakhini, Tissue classification with gene expression profiles, in Proceedings of the 4th Annual International Conference on Computational Biology (RECOMB), Tokyo, 2000, pp. 54–64

    Google Scholar 

  11. A. Ben-Dor, N. Friedman, Z. Yakhini, Class discovery in gene expression data, in Proceedings of the 5th Annual International Conference on Computational Biology (RECOMB), New York, NY, USA (ACM, 2001), pp. 31–38

    Google Scholar 

  12. A. Ben-Dor, B. Chor, R. Karp, Z. Yakhini, Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)

    Google Scholar 

  13. Y. Bengio, O. Delalleau, N. Le Roux, Label propagation and quadratic criterion, in Semi Supervised Learning (MIT, Cambridge, 2006)

    Google Scholar 

  14. K.P. Bennett, A. Demiriz, Semi-supervised support vector machines. Adv. Neural Inf. Process. Syst. 11, 368–374 (1999)

    Google Scholar 

  15. C. Bergeron, F. Cheriet, J. Ronsky, R. Zernicke, H. Labelle, Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression. Eng. Appl. Artif. Intell. 18(8), 973–983 (2005)

    Google Scholar 

  16. D. Bertsimas, R. Shioda, Classification and regression via integer optimization. Oper. Res. 55(2), 252–271 (2007)

    MathSciNet  MATH  Google Scholar 

  17. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Kluwer Academic, Norwell, 1981)

    MATH  Google Scholar 

  18. T.D. Bie, N. Cristianini, Semi-supervised learning using semi-definite programming, in Semi-Supervised Learning (MIT, Cambridge, 2006), pp. 119–135

    Google Scholar 

  19. C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2006)

    Google Scholar 

  20. A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)

    MathSciNet  MATH  Google Scholar 

  21. A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in Proceedings of the 11th Annual Conference on Computational Learning Theory (ACM, New York, 1998), pp. 92–100

    Google Scholar 

  22. V. Boginski, Network-based data mining: operations research techniques and applications, in Encyclopedia of Operations Research and Management Science (Wiley, Hoboken, 2010) pp. 3498–3508

    Google Scholar 

  23. P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimization and support vector machines, in Proceedings of the Fifteenth International Conference on Machine Learning (ICML), Madison, 1998, pp. 82–90

    Google Scholar 

  24. P.S. Bradley, U.M. Fayyad, O.L. Mangasarian, Mathematical programming for data mining: formulations and challenges. INFORMS J. Comput. 11, 217–238 (1999)

    MathSciNet  MATH  Google Scholar 

  25. J.P. Brooks, Support vector machines with the ramp loss and the hard margin loss. Oper. Res. 59(2), 467–479 (2011)

    MathSciNet  MATH  Google Scholar 

  26. M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugne, T. Furey, M. Ares, D. Haussler, Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. 97(1), 262–267 (2000)

    Google Scholar 

  27. K. Bryan, Biclustering of expression data using simulated annealing, in Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS) Washington, DC, USA, 2005, pp. 383–388

    Google Scholar 

  28. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. Hullender, Learning to rank using gradient descent, in Proceedings of the 22nd International Conference on Machine Learning, Bonn, 2005, pp. 89–96

    Google Scholar 

  29. S. Busygin, O.A. Prokopyev, P.M. Pardalos, Feature selection for consistent biclustering. J. Comb. Optim. 10, 7–21 (2005)

    MathSciNet  MATH  Google Scholar 

  30. S. Busygin, N. Boyko, P.M. Pardalos, M. Bewernitz, G. Ghacibeh, Biclustering EEG data from epileptic patients treated with vagus nerve stimulation, in Data Mining, Systems Analysis and Optimization in Biomedicine, vol. 953, ed. by O. Seref, O.E. Kundakcioglu, P.M. Pardalos (American Institute of Physics, Melville, 2007), pp. 220–231

    Google Scholar 

  31. S. Busygin, O. Prokopyev, P.M. Pardalos, Biclustering in data mining. Comput. Oper. Res. 35(9), 2964–2987 (2008)

    MathSciNet  MATH  Google Scholar 

  32. D. Casasent, X.W. Chen, Waveband selection for hyperspectral data: optimal feature selection, in Proceedings of SPIE, vol. 5106, Orlando, FL, 2003, pp. 259–270

    Google Scholar 

  33. W. Chaovalitwongse, Novel quadratic programming approach for time series clustering with biomedical application. J. Comb. Optim. 15, 225–241 (2008)

    MathSciNet  MATH  Google Scholar 

  34. O. Chapelle, Training a support vector machine in the primal. Neural Comput. 19, 1155–1178 (2007)

    MathSciNet  MATH  Google Scholar 

  35. O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in Proceeding of International Conference on Artificial Intelligence and Statistics (AISTAT), Barbados, 2005, pp. 57–64

    Google Scholar 

  36. O. Chapelle, M. Chi, A. Zien, A continuation method for semi-supervised SVMs, in Proceedings of the 23rd International Conference on Machine Learning (ICML), New York, NY, USA (ACM, 2006), pp. 185–192

    Google Scholar 

  37. O. Chapelle, V. Sindhwani, S.S. Keerthi, Branch and bound for semi-supervised support vector machines. Adv. Neural Inform. Process. Syst. 19, 217–224 (2007)

    Google Scholar 

  38. O. Chapelle, V. Sindhwani, S.S. Keerthi, Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 9, 203–233 (2008)

    MATH  Google Scholar 

  39. X. Chen, An improved branch and bound algorithm for feature selection. Pattern Recognit. Lett. 24(12), 1925–1933 (2003)

    Google Scholar 

  40. Y. Cheng, G.M. Church, Biclustering of expression data, in Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (AAAI, Menlo Park, 2000) pp. 93–103

    Google Scholar 

  41. H. Cheng, Z. Liu, J. Yang, Sparsity induced similarity measure for label propagation, in Proceedings of 12nd IEEE International Conference on Computer Vision, Kyoto, Japan, 2010, pp. 317–324

    Google Scholar 

  42. K.Y. Choy, C.W. Chan, Modeling of river discharges and rainfall using radial basis function networks based on support vector regression. Int. J. Syst. Sci. 34(14–15), 763–773 (2003)

    MATH  Google Scholar 

  43. C. Cifarelli, G. Patrizi, Solving large protein folding problem by a linear complementarity algorithm with 0–1 variables. Optim. Methods Softw. 22(1), 25–49 (2007)

    MathSciNet  MATH  Google Scholar 

  44. R. Collobert, F. Sinz, J. Weston, L. Bottou, T. Joachims, Large scale transductive SVMs. J. Mach. Learn. Res. 7, 2006 (2006)

    Google Scholar 

  45. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  46. M. Dash, H. Liu, Feature selection for classification. Intell. Data Anal. 1(3), 131–156 (1997)

    Google Scholar 

  47. O. Delalleau, Y. Bengio, N. Le Roux, Efficient non-parametric function induction in semi-supervised learning, in Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (AISTAT 2005), Barbados, 2005

    Google Scholar 

  48. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  49. I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), New York, NY, USA (ACM, 2001), pp. 269–274

    Google Scholar 

  50. I.S. Dhillon, S. Mallela, D.S. Modha, Information-theoretic co-clustering, in Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), New York, NY, USA (ACM, 2003), pp. 89–98

    Google Scholar 

  51. J. Doak, An evaluation of feature selection methods and their application to computer security. Technical report, University of California, 1992

    Google Scholar 

  52. C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank aggregation methods for the web, in Proceedings of the 10th International Conference on World Wide Web, New York, NY, USA (ACM, 2001), pp. 613–622

    Google Scholar 

  53. S. Eschrich, J. Ke, L.O. Hall, D.B. Goldgof, Fast accurate fuzzy clustering through data reduction. IEEE Trans. Fuzzy Syst. 11(2), 262–270 (2003)

    Google Scholar 

  54. E. Forgy, Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21(3), 768 (1965)

    Google Scholar 

  55. A. Frank, D. Geiger, Z. Yakhini, A distance-based branch and bound feature selection algorithm, in Proceedings of the Nineteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-03), Acapulco, 2003, pp. 241–248

    Google Scholar 

  56. Y. Freund, R. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)

    MathSciNet  Google Scholar 

  57. B.J. Frey, D. Dueck, Clustering by passing messages between data points. Sci. 315(5814), 972–976 (2007)

    MathSciNet  MATH  Google Scholar 

  58. H.P. Friedman, J. Rubin, On some invariant criteria for grouping data. J. Am. Stat. Assoc. 62(320), 1159–1178 (1967)

    MathSciNet  Google Scholar 

  59. G. Fung, O.L. Mangasarian, Semi-supervised support vector machines for unlabeled data classification. Optim. Methods Softw. 15, 29–44 (2001)

    MATH  Google Scholar 

  60. G.N. Garcia, T. Ebrahimi, J.M. Vesin, Joint time-frequency-space classification of EEG in a brain-computer interface application. J. Appl. Signal Process 7, 713–729 (2003)

    Google Scholar 

  61. M.R. Garey, D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness (W. H. Freeman, New York, 1979)

    MATH  Google Scholar 

  62. Z. Ghahramani, Unsupervised learning, in Advanced Lectures on Machine Learning (Springer, Berlin/New York, 2003), pp. 72–112

    Google Scholar 

  63. I.A. Gheyas, L.S. Smith, Feature subset selection in large dimensionality domains. Pattern Recognit. 43(1), 5–13 (2010)

    MATH  Google Scholar 

  64. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Google Scholar 

  65. Y. Grandvalet, S. Canu, Adaptive scaling for feature selection in SVMs, in NIPS, Vancouver, 2002, pp. 553–560

    Google Scholar 

  66. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  67. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    MATH  Google Scholar 

  68. Y. Hamamoto, S. Uchimura, Y. Matsuura, T. Kanaoka, S. Tomita, Evaluation of the branch and bound algorithm for feature selection. Pattern Recognit. Lett. 11(7), 453–456 (1990)

    MATH  Google Scholar 

  69. J.A. Hartigan, Direct clustering of a data matrix. J. Am. Stat. Assoc. 67(337), 123–129 (1972)

    Google Scholar 

  70. W.C. Hong, P.F. Pai, Potential assessment of the support vector regression technique in rainfall forecasting. Water Res. Manage. 21(2), 495–513 (2007)

    Google Scholar 

  71. C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification (2004), http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  72. Z. Huang, H. Chen, C.J. Hsu, W.H. Chenb, S. Wuc, Credit rating analysis with support vector machines and neural networks: a market comparative study. Decis. Support Syst. 37, 543–558 (2004)

    Google Scholar 

  73. K. Hyunsoo, Z.X. Jeff, M.C. Herbert, P. Haesun, A three-stage framework for gene expression data analysis by L1-norm support vector regression. Int. J. Bioinformatics Res. Appl. 1(1), 51–62 (2005)

    Google Scholar 

  74. A.K. Jain, Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Google Scholar 

  75. A.K. Jain, R.C. Dubes, Algorithms for Clustering Data (Prentice-Hall, Upper Saddle River, 1988)

    MATH  Google Scholar 

  76. X. Jiang, L.H. Lim, Y. Yao, Y. Ye, Statistical ranking and combinatorial hodge theory. Mathematical Programming 127, 1–42 (2010)

    MathSciNet  Google Scholar 

  77. T. Joachims, Text categorization with support vector machines: learning with many relevant features, in Proceedings of the European Conference on Machine Learning, Berlin, ed. by C. Nédellec, C. Rouveirol (Springer, 1998), pp. 137–142

    Google Scholar 

  78. T. Joachims, Making large–scale SVM learning practical, in Advances in Kernel Methods – Support Vector Learning, Cambridge, MA, ed. by B. Schölkopf, C.J.C. Burges, A.J. Smola (MIT, 1999), pp. 169–184

    Google Scholar 

  79. T. Joachims, Transductive learning via spectral graph partitioning, in Proceedings of 20th International Conference on Machine Learning (ICML), Washington, DC, USA, vol. 20, 2003, pp. 290–297

    Google Scholar 

  80. G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in Proceedings of the Eleventh International Conference on Machine Learning, New Brunswick, vol. 129, 1994, pp. 121–129

    Google Scholar 

  81. H. Kashima, J. Hu, B. Ray, M. Singh, K-means clustering of proportional data using L1 distance, in Proceedings of 19th International Conference on Pattern Recognition (ICPR), Tampa, FL, 2009, pp. 1–4

    Google Scholar 

  82. F. Klawonn, A. Keller, Fuzzy clustering based on modified distance measures, in IDA ’99 Proceedings of the Third International Symposium on Advances in Intelligent Data Analysis (Springer, Berlin, 1999), pp. 291–302

    Google Scholar 

  83. Y. Kluger, R. Basri, J.T. Chang, M. Gerstein, Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)

    Google Scholar 

  84. R. Kohavi, G.H. John, Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    MATH  Google Scholar 

  85. M. Kudo, J. Sklansky, Comparison of algorithms that select features for pattern classifiers. Pattern Recognit. 33(1), 25–41 (2000)

    Google Scholar 

  86. O.E. Kundakcioglu, P.M. Pardalos, The complexity of feature selection for consistent biclustering, in Clustering Challenges in Biological Networks (World Scientific, Hackensack, 2009), pp. 257–266

    Google Scholar 

  87. O.E. Kundakcioglu, T. Ünlüyurt, Bottom-up construction of minimum-cost AND/OR trees for sequential fault diagnosis. IEEE Trans. Syst. Man Cybern. A 37(5), 621–629 (2007)

    Google Scholar 

  88. O.E. Kundakcioglu, O. Seref, P.M. Pardalos, Multiple instance learning via margin maximization. Appl. Numer. Math. 60(4), 358–369 (2010)

    MathSciNet  MATH  Google Scholar 

  89. T.N. Lal, M. Schroeder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, B. Schölkopf, Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51(6), 1003–1010 (2004)

    Google Scholar 

  90. P. Langley, Selection of relevant features in machine learning, in Proceedings of the AAAI Fall Symposium on Relevance (AAAI, 1994), New Orleans, LA, pp. 140–144

    Google Scholar 

  91. F. Lauer, G. Bloch, Incorporating prior knowledge in support vector regression. Mach. Learn. 70, 89–118 (2008)

    Google Scholar 

  92. S. Lee, A. Verri (eds.), Pattern Recognition with Support Vector Machines, Niagara Falls, Canada (Springer, New York/Berlin, 2002)

    MATH  Google Scholar 

  93. Y. Linde, A. Buzo, R. Gray, An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1), 84–95 (1980)

    Google Scholar 

  94. H. Liu, L. Yu, Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)

    Google Scholar 

  95. S. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982). Original paper was published as a technical note in 1957, Bell Labs

    MathSciNet  MATH  Google Scholar 

  96. J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in Fifth Symposium on Math, Statistics and Probability (University of California Press, Berkeley, 1967), pp. 281–297

    Google Scholar 

  97. S. Madeira, A. Oliveira, Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics 1, 24–45 (2004)

    Google Scholar 

  98. P.K. Mallapragada, R. Jin, A.K. Jain, Y. Liu, SemiBoost: boosting for semi-supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2000–2014 (2009)

    Google Scholar 

  99. J. Mao, A.K. Jain, A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Trans. Neural Netw. 7(1), 16–29 (2002)

    Google Scholar 

  100. G.J. McLachlan, T. Krishnan, The EM algorithm and extensions Wiley-Interscience, Hoboken, Newjersy (LibreDigital, 2008)

    Google Scholar 

  101. Merriam-Webster, Dictionary and Thesaurus – Merriam-Webster Online (2011), http://www.merriam-webster.com/dictionary/data_mining

  102. B.G. Mirkin, Mathematical Classification and Clustering, Kluwer Academic Publishers, Dordrecht, Netherland, (Springer, 1996)

    MATH  Google Scholar 

  103. A. Nahapetyan, S. Busygin, P.M. Pardalos, An improved heuristic for consistent biclustering problems, in Mathematical Modelling of Biosystems (Springer, Berlin, 2008), pp. 185–198

    Google Scholar 

  104. S. Nakariyakul, D.P. Casasent, Adaptive branch and bound algorithm for selecting optimal features. Pattern Recognit. Lett. 28(12), 1415–1427 (2007)

    Google Scholar 

  105. P.M. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection. IEEE Transact. Comput. 100(9), 917–922 (1977)

    Google Scholar 

  106. W.S. Noble, Support vector machine applications in computational biology, in Kernel Methods in Computational Biology (MIT, Cambridge MA, 2004), New York, NY, pp. 71–92

    Google Scholar 

  107. R.F.E. Osuna, F. Girosi, An improved training algorithm for support vector machines, in IEEE Workshop on Neural Networks for Signal Processing, New York, NY, 1997, pp. 276–285

    Google Scholar 

  108. P.F. Pai, W.C. Hong, A recurrent support vector regression model in rainfall forecasting. Hydrol. Process. 21(6), 819–827 (2007)

    Google Scholar 

  109. P.M. Pardalos, E. Romeijn (eds.), Handbook of Optimization in Medicine (Springer, Newyork/London, 2009)

    MATH  Google Scholar 

  110. J. Platt, Fast training of SVMs using sequential minimal optimization, in Advances in Kernel Methods: Support Vector Learning (MIT, Cambridge MA, 1999), pp. 185–208

    Google Scholar 

  111. M.H. Poursaeidi and O.E. Kundakcioglu, Robust support vector machines for multiple instanceclassification, Annals of Operations Research, published online. doi:10.1007/s10479-012- 1241-z M.H. Poursaeidi, O.E. Kundakcioglu, Robust support vector machines for multiple instance classification (2011, under revision)

    Google Scholar 

  112. G. Pyrgiotakis, O.E. Kundakcioglu, K. Finton, P.M. Pardalos, K. Powers, B.M. Moudgil, Cell death discrimination with Raman spectroscopy and support vector machines. Ann. Biomed. Eng. 37(7), 1464–1473 (2009)

    Google Scholar 

  113. G. Pyrgiotakis, O.E. Kundakcioglu, P.M. Pardalos, B.M. Moudgil, Raman spectroscopy and support vector machines for quick toxicological evaluation of titania nanoparticles. J. Raman Spectrosc. (2011, accepted). doi:10.1002/jrs.2839

    Google Scholar 

  114. M. Ris, J. Barrera, D.C. Martins Jr., U-curve: a branch-and-bound optimization algorithm for u-shaped cost functions on boolean lattices applied to the feature selection problem. Pattern Recognit. 43(3), 557–568 (2010)

    MATH  Google Scholar 

  115. Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507 (2007)

    Google Scholar 

  116. N.A. Sakhanenko, G.F. Luger, Shock physics data reconstruction using support vector regression. Int. J. Mod. Phys. 17(9), 1313–1325 (2006)

    MATH  Google Scholar 

  117. B. Schölkopf, A.J. Smola, Learning with Kernels (MIT, Cambridge MA, 2002)

    Google Scholar 

  118. O. Seref, O.E. Kundakcioglu, P.M. Pardalos, Selective linear and nonlinear classification, in CRM Proceedings and Lecture Notes, vol. 45, ed. by P.M. Pardalos, P. Hansen (American Mathematical Society, Providence, 2008), pp. 211–234

    Google Scholar 

  119. O. Seref, O.E. Kundakcioglu, O.A. Prokopyev, P.M. Pardalos, Selective support vector machines. J. Comb. Optim. 17(1), 3–20 (2009)

    MathSciNet  MATH  Google Scholar 

  120. S. Shalev-Shwartz, Y. Singer, N. Srebro, A. Cotter, Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. B 127, 3–30 (2011)

    MathSciNet  MATH  Google Scholar 

  121. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  122. Q. Sheng, Y. Moreau, B. DeMoor, Biclustering microarray data by Gibbs sampling. Bioinformatics 19, 196–205 (2003)

    Google Scholar 

  123. H.D. Sherali, J. Desai, A global optimization RLT-based approach for solving the fuzzy clustering problem. J. Glob. Optim. 33(4), 597–615 (2005)

    MathSciNet  MATH  Google Scholar 

  124. Y. Shi, Y. Tian, G. Kou, Y. Peng, J. Li, Optimization Based Data Mining: Theory and Applications (Springer, New York, 2011)

    Google Scholar 

  125. O. Shirokikh, V. Stozhkov, V. Boginski, Combinatorial optimization techniques for network-based data mining, in Handbook of Combinatorial Optimization, 2nd Edition, (Springer, 2013)

    Google Scholar 

  126. W. Siedlecki, J. Sklansky, On automatic feature selection. Intern. J. Pattern Recognit. Artif. Intell. 2(2), 197–220 (1988)

    Google Scholar 

  127. V. Sindhwani, S.S. Keerthi, Large scale semi-supervised linear SVMs, in Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM, New York, 2006), pp. 477–484

    Google Scholar 

  128. P. Somol, P. Pudil, J. Kittler, Fast branch & bound algorithms for optimal feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 900–912 (2004)

    Google Scholar 

  129. M. Song, C.M. Breneman, J. Bi, N. Sukumar, K.P. Bennett, S. Cramer, N. Tugcu, Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. J. Chem. Inf. Comput. Sci. 42(6), 1347–1357 (2002)

    Google Scholar 

  130. I. Steinwart, Support vector machines are universally consistent. J. Complex. 18, 768–791 (2002)

    MathSciNet  MATH  Google Scholar 

  131. Y.F. Sun, Y.C. Liang, C.G. Wu, X.W. Yang, H.P. Lee, W.Z. Lin, Estimate of error bounds in the improved support vector regression. Prog. Nat. Sci. 14(4), 362–364 (2004)

    MathSciNet  MATH  Google Scholar 

  132. M. Szummer, T. Jaakkola, Partially labeled classification with Markov random walks. Adv. Neural Inf. Process. Syst. 2, 945–952 (2002)

    Google Scholar 

  133. J. Thorsten, Transductive inference for text classification using support vector machines, in Proceedings of 16th International Conference on Machine Learning (Morgan Kaufmann, San Francisco, 1999), pp. 200–209

    Google Scholar 

  134. T.B. Trafalis, H. Ince, Support vector machine for regression and applications to financial forecasting, in Proceedings of International Joint Conference on Neural Networks (IJCNN), Como, 2002

    Google Scholar 

  135. A.C. Trapp, O.A. Prokopyev, Solving the order-preserving submatrix problem via integer programming. INFORMS J. Comput. 22(3), 387–400 (2010)

    MATH  Google Scholar 

  136. V. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995)

    MATH  Google Scholar 

  137. V. Vapnik, A. Chervonenkis, Theory of Pattern Recognition (Naula/Moscow, Russia, 1974)

    MATH  Google Scholar 

  138. V. Vapnik, A. Sterin, On structural risk minimization or overall risk in a problem of pattern recognition, in Automation and Remote Control, vol. 10, 1977, pp. 1495–1503

    Google Scholar 

  139. J. Wang, On transductive support vector machines, in Prediction and Discovery (American Mathematical Society, Providence, Snowbird, Utah, 2007)

    Google Scholar 

  140. Z. Wang, J. Yang, G. Li, An improved branch & bound algorithm in feature selection, in Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Chongqing, 2003, pp. 549–556

    Google Scholar 

  141. J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature selection for SVMs, in Proceeding of NIPS, Denver, 2000, pp. 668–674

    Google Scholar 

  142. Z.L. Wu, C.H. Li, J.K.Y. Ng, K.R.P.H. Leung, Location estimation via support vector regression. IEEE Trans. Mob. Comput. 6(3), 311–321 (2007)

    Google Scholar 

  143. X.S. Xie, W.T. Liu, B.Y. Tang, Space based estimation of moisture transport in marine atmosphere using support vector regression. Remote Sens. Environ. 112(4), 1846–1855 (2008)

    Google Scholar 

  144. E.P. Xing, R.M. Karp, CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics Discov. Note 17, 306–315 (2001)

    Google Scholar 

  145. K. Yamamoto, F. Asano, T. Yamada, N. Kitawaki, Detection of overlapping speech in meetings using support vector machines and support vector regression. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89–A(8), 2158–2165 (2006)

    Google Scholar 

  146. S. Yang, P. Shi, Bidirectional automated branch and bound algorithm for feature selection. J. Shanghai Univ. (English Edition) 9(3), 244–248 (2005)

    Google Scholar 

  147. B. Yu, B. Yuan, A more efficient branch and bound algorithm for feature selection. Pattern Recognit. 26(6), 883–889 (1993)

    MathSciNet  Google Scholar 

  148. A.L. Yuille, A. Rangarajan, The concave-convex procedure. Neural Comput. 15(4), 915–936 (2003)

    MATH  Google Scholar 

  149. X. Zhu, Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon University, 2005, CMU-LTI-05-192

    Google Scholar 

  150. X. Zhu, Semi-supervised learning literature survey (2006), Available online at http://pages.cs.wisc.edu/~jerryzhu

  151. X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with label propagation. Technical report, Citeseer, 2002

    Google Scholar 

  152. J. Zhu, S. Rosset, T. Hastie, R. Tibshirani, 1-norm support vector machines, in Proceedings of Advances in Neural Information Processing Systems, Vancouver, 2003

    Google Scholar 

  153. X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in Proceedings of 21st International Conference on Machine Learning (ICML), Washington, DC, USA, vol. 20, 2003, p. 912

    Google Scholar 

  154. H. Zou, M. Yuan, The f ∞ -norm support vector machine. Stat. Sin. 18, 379–398 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samira Saedi or O. Erhun Kundakcioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Saedi, S., Kundakcioglu, O.E. (2013). Combinatorial Optimization in Data Mining. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_7

Download citation

Publish with us

Policies and ethics