Skip to main content

Combinatorial Optimization in Transportation and Logistics Networks

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization

Abstract

Transportation and logistic networks have always been offering significant practical applications for optimization and operations research techniques. Especially in the last two decades, numerous success stories for large-scale, realistic networks have attracted the interest of the scientific and research society. A typical example of such a success story is the vehicle routing problem, where recent advancements have made it possible for large, complex problems to be solved to optimality. This chapter is designed so as to introduce the reader in the notions tackled by important problems in transportation and logistics engineering and the algorithms that have been devised over the years to solve them. The problems presented and studied in this contribution include the traffic assignment, the vehicle routing problem, and the toll pricing among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. H. Armelius, L. Hultkranz, The politico-economic link between public transport and road pricing: an ex-ante study of the Stockholm road-pricing trial. Transport. Policy 13(1), 167–172 (2006)

    Google Scholar 

  2. R. Arnott, K. Small, The economics of traffic congestion. Am. Sci. 82(5), 446–455 (1994)

    Google Scholar 

  3. A. Atamtürk, M.W.P. Savelsbergh, Integer programming software systems. Ann. Oper. Res. 140(1), 67–124 (2005)

    MathSciNet  MATH  Google Scholar 

  4. A. Babin, M. Florian, L. James-Lefebvre, H. Spiess, EMME/2 An interactive graphic method for road and transit planning, in RTAC Annual Conference Preprints, vol. 1 (1981)

    Google Scholar 

  5. M.L. Balinski, R.E. Quandt, On an integer program for a delivery problem. Oper. Res. 12(2), 300–304 (1964). JSTOR

    Google Scholar 

  6. L.D. Baskar, B. De Schutter, H. Hellendoorn, Hierarchical traffic control and management with intelligent vehicles, in IEEE Intelligent Vehicles Symposium, 2007, pp. 834–839

    Google Scholar 

  7. L.D. Baskar, B. De Schutter, H. Hellendoorn, Optimal routing for ntelligent vehicle highway systems using mixed integer linear programming. Technical Report, Delft University, Netherlands, 2010

    Google Scholar 

  8. J.C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994)

    MATH  Google Scholar 

  9. M.J. Beckmann, C.B. McGuire, C.B. Winsten, Studies in the Economics of Transportation (Yale University Press, New Haven, 1956)

    Google Scholar 

  10. A. Bemporad, M. Morari, Control of systems integrating logic, dynamics and constraints. Automatica 35(3), 407–427 (1999)

    MathSciNet  MATH  Google Scholar 

  11. A. Ben-Tal, A. Nemirovski, Robust optimization—methodology and applications. Math. Program. 92(3), 453–480 (2002)

    MathSciNet  MATH  Google Scholar 

  12. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation (Prentice Hall, Old Tappan, 1989)

    MATH  Google Scholar 

  13. D.D. Bochtis, S.G. Vougioukas, H.W. Griepentrog, A mission planner for an autonomous tractor. Trans. ASABE 52(5), 1429–1440 (2009)

    Google Scholar 

  14. J.B. Bramel, D. Simchi-Levi, A location based heuristic for general routing problems. Oper. Res. 43, 649–660 (1995)

    MathSciNet  MATH  Google Scholar 

  15. L.S. Buriol, M.G.C. Resende, C.C. Ribiero, M. Thorup, A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)

    MathSciNet  MATH  Google Scholar 

  16. L.S. Buriol, M.J. Hirsch, P.M. Pardalos, T. Querido, M.G.C. Resende, M. Ritt, A hybrid genetic algorithm for road congestion minimization, in Proceedings of the XLI Simpósio Brasileiro de Pesquisa Operacional, 2009, pp. 2515–2526

    Google Scholar 

  17. L.S. Buriol, M.J. Hirsch, P.M. Pardalos, T. Querido, M.G.C. Resende, M. Ritt, A biased random-key genetic algorithm for road congestion minimization. Optim. Lett. 4(4), 619–633 (2010)

    MathSciNet  MATH  Google Scholar 

  18. D.G. Cantor, M. Gerla, Optimal routing in a packet-switched computer network. IEEE Trans. Comput. C-23, 1062–1069 (1974)

    MathSciNet  Google Scholar 

  19. M. Carey, A constraint qualification for a dynamic traffic assignment model. Transport. Sci. 20, 55–88 (1986)

    Google Scholar 

  20. M. Carey, Nonconvexity of the dynamic traffic assignment problem. Transport. Res. 26B, 127–133 (1992)

    MathSciNet  Google Scholar 

  21. Y.P. Chan, Optimal travel time reduction in a transport network: an application of network aggregation and branch-and-bound techniques. Research Report R, vol. 69, pp. 693–695, 1969

    Google Scholar 

  22. C.K. Chau, K.M. Sim, The price of anarchy for non-atomic congestion games with symmetric cost maps and elastic demands. Oper. Res. Lett. 31(5), 327–334 (2003)

    MathSciNet  MATH  Google Scholar 

  23. N. Christofides, A. Mingozzi, P. Toth, Exact algorithms for the vehicle routing problem based on the spanning tree and shortest path relaxations. Math. Program. 20, 255–282 (1981)

    MathSciNet  MATH  Google Scholar 

  24. E.G. Coffman Jr, Scheduling in Computer and Job Shop Systems (Wiley, New York, 1976)

    Google Scholar 

  25. J.R. Correa, A.S. Schulz, N.E. Stier-Moses, Selfish routing in capacitated networks. Math. Oper. Res. 29(4), 961–976 (2004)

    MathSciNet  MATH  Google Scholar 

  26. S. Dafermos, Convergence of a network decomposition algorithm for the traffic equilibrium model, in Proceedings of the 8th International Symposium on Transportation and Traffic Theory, Toronto, ed. by V.F. Hurdle et al. (University of Toronto Press, Toronto, 1983), pp. 43–156

    Google Scholar 

  27. C. Daganzo, The cell transmission model: a simple dynamic representation of highway traffic consistent with the hydrodynamic theory. Transport. Res. 28B(4), 269–287 (1994)

    Google Scholar 

  28. C. Daganzo, The cell transmission model, Part II: network traffic. Transport. Res. 29B(2), 79–93 (1995)

    Google Scholar 

  29. G.B. Dantzig, J.H. Ramser, The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

    MathSciNet  MATH  Google Scholar 

  30. J. Descrosiers, Y. Dumas, M.M. Solomon, F. Soumis, Time constrained routing snad scheduling, in Network Routing, Handbooks in Operations Research and Management Science, ed. by M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser (North-Holland, Amsterdam, 1995), pp. 35–139

    Google Scholar 

  31. M. Desrochers, J. Descrosiers, M.M. Solomon, A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40, 342–354 (1992)

    MathSciNet  MATH  Google Scholar 

  32. M. Dror, Note on the complexity of the shortest path models for column generation in VRPTW. Oper. Res. 42, 977–978 (1994)

    MATH  Google Scholar 

  33. J. Eliasson, L.-G. Mattsson, Equity effects of congestion pricing: Quantitative methodology and a case study for Stockholm. Transport. Res. A 40(7), 602–620 (2006)

    Google Scholar 

  34. M. Ericsson, M.G.C. Resende, P.M. Pardalos, A genetic algorithm for the weight setting problem in OSPF routing. J. Combin. Optim. 6(3), 299–333 (2002)

    MathSciNet  MATH  Google Scholar 

  35. S.P. Evans, Derivation and analysis of some models for combining trip distribution and assignment. Transport. Res. 10, 37–57 (1976)

    Google Scholar 

  36. M.L. Fisher, R. Jaikumar, A generalized assignment heuristic for vehicle routing. Networks (Wiley Online Library) 11(2), 109–124 (1981)

    MathSciNet  Google Scholar 

  37. L.R. Ford Jr, D.R. Fulkerson, Solving the transportation problem. Manag. Sci. 3(1), 24–32 (1956)

    Google Scholar 

  38. M. Florian, D. Hearn, Network equilibrium models and algorithms, in Handbooks in OR and MS, vol. 8, Chap. 6, ed. by M.O. Ball et al. (North-Holland, Amsterdam, 1995), pp. 485–550

    Google Scholar 

  39. M. Florian, D.W. Hearn, Traffic assignment: equilibrium models, in Pareto Optimality, Game Theory and Equilibria (Springer, New York, 2008) (pp. 571–592)

    Google Scholar 

  40. M. Frank, P. Wolfe, An algorithm for quadratic programming. Nav. Res. Logist. Q. 3(1–2), 95–110 (1956), Wiley

    MathSciNet  Google Scholar 

  41. R.S. Garfinkel, G.L. Nemhauser, Integer Programming, vol. 4 (Wiley, New York, 1972)

    MATH  Google Scholar 

  42. J. Geunes, P.M. Pardalos, Supply Chain Optimization, vol. 98 (Springer, New York, 2005)

    MATH  Google Scholar 

  43. B.E. Gillett, L.R. Miller, A heuristic algorithm for the vehicle dispatch problem. Oper. Res. 22, 240–349 (1974)

    Google Scholar 

  44. A. Glazer, E. Niskanen, Parking fees and congestion. Reg. Sci. Urban Econ. 22, 123–132 (1992)

    Google Scholar 

  45. B. Golden, A problem in network interdiction. Nav. Res. Logist. Q. 25(4), 711–713 (1978), Wiley

    MathSciNet  MATH  Google Scholar 

  46. B.L. Golden, A minimum-cost multicommodity network flow problem concerning imports and exports. Networks (Wiley) 5(4), 331–356 (1975)

    MathSciNet  MATH  Google Scholar 

  47. C.P. Gomes, B. Selman, N. Crato, Heavy-tailed distributions in combinatorial search, in Principles and Practice of Constraint Programming-CP97 (Springer, Berlin/Heidelberg 1997), pp. 121–135

    Google Scholar 

  48. P. Goodwin, Congestion charging in central London: lessons learned. Plann. Theor Pract. 5(4), 501–505 (2004)

    Google Scholar 

  49. E. Hadjiconstantinou, N. Christofides, An exact algorithm for general, orthogonal, two-dimensional knapsack problems. Eur. J. Oper. Res. (Elsevier) 83(1), 39–56 (1995)

    MATH  Google Scholar 

  50. R. Hamerslag, Prognosemodel voor het personenvervoer in Nederland (Technische Hogeschool Delf, Delft, 1971)

    Google Scholar 

  51. D.W. Hearn, S. Lawphongpanich, J.A. Ventura, Restricted simplicial decomposition: computation and extensions, in Computation Mathematical Programming (Springer, Berlin/Heidelberg, 1987), pp. 99–118

    Google Scholar 

  52. D.W. Hearn, S. Lawphongpanich, J.A. Ventura, Finiteness in restricted simplicial decomposition. Oper. Res. Lett. (Elsevier) 4(3), 125–130 (1985)

    MathSciNet  MATH  Google Scholar 

  53. D.W. Hearn, M.B. Yildirim, A toll pricing framework for traffic assignment problems with elastic demand. Appl. Optim. 63, 135–143 (2001)

    MathSciNet  Google Scholar 

  54. D.W. Hearn, M.B. Yildirim, M.V. Ramana, L.H. Bai, Computational methods for congestion toll pricing models. In Proceedings of the Intelligent Transportation Systems, 2001, pp. 257–262. IEEE

    Google Scholar 

  55. D.W. Hearn, M.V. Ramana, in Solving Congestion Toll Pricing Models, University of Florida, Department of Industrial & Systems Engineering

    Google Scholar 

  56. D.W. Hearn, J. Ribera, Convergence of the Frank–Wolfe method for certain bounded variable traffic assignment problems. Transport. Res. B Methodol. (Elsevier) 15(6), 437–442 (1981)

    MathSciNet  Google Scholar 

  57. M. Held, R.M. Karp, The traveling salesman problem and minimum spanning trees: Part II. Math. Program. 1, 6–25 (1971)

    MathSciNet  MATH  Google Scholar 

  58. J.M. Henderson, R.E. Quandt, Microeconomic Theory: A Mathematical Approach (McGraw-Hill, New York, 1958)

    Google Scholar 

  59. D.A. Hensher, K.J. Button, Handbook of Transport Modelling, 2nd edn. (Emerald, Bingley, 2007)

    Google Scholar 

  60. C.A. Holloway, An extension of the Frank–Wolfe method of feasible directions. Math. Program. 6, 14–27 (1974)

    MathSciNet  MATH  Google Scholar 

  61. S.P. Hoogendoom, P.H. Bovy, State-of-the-art of vehicular traffic flow modelling. In Proceedings of the Institution of Mechanical Engineers. Part I: J. Syst. Control Eng. 215(4), 283-303

    Google Scholar 

  62. B. Kallehauge, J. Larsen, O.B. Madsen, M.M. Solomon, Vehicle Routing Problem with Time Windows (Springer, New York 2005), pp. 67–98

    Google Scholar 

  63. D. Kim, P.M. Pardalos, A solution approach to the fixed charge network flow problem using a dynamic slope scaling procedure. Oper. Res. Lett. (24), 195–203 (1999)

    MathSciNet  MATH  Google Scholar 

  64. D. Kim, P.M. Pardalos, Dynamic slope scaling and trust interval techniques for solving concave piecewise linear network flow problems. Network (35–3), 216–222 (2000)

    MathSciNet  Google Scholar 

  65. F. Knight, Some fallacies in the interpretation of social cost. Q. J. Econ. 38(4), 582–606 (1924)

    Google Scholar 

  66. J. Kohl, Der Verkehr und die Ansiedlungen der Menschen (Dresden/Leipzig, 1841)

    Google Scholar 

  67. A.W.J. Kolen, A.H.G. Rinnoy Kan, H.W.J.M. Trienekens, Vehicle routing with time windows. Oper. Res. 35, 266–273 (1987)

    MathSciNet  MATH  Google Scholar 

  68. G. Laporte, M. Gendreau, J.Y. Potvin, F. Semet, Classical and modern heuristics for the vehicle routing problem. Int. Trans. Oper. Res. (Wiley) 7(4–5), 285–300 (2000)

    MathSciNet  Google Scholar 

  69. T. Larsson, A. Migdalas, M. Patriksson, A partial linearization method for the traffic assignment problem. Report LiTH-MAT-R-89-06, Optimization, Linköping Institute of Technology, Department of Mathematics, Linköping, 1989

    Google Scholar 

  70. E.L. Lawler, D.E. Wood, Branch and bound methods: a survey. Oper. Res. 14(4), 699–719 (1966)

    MathSciNet  MATH  Google Scholar 

  71. J. Leape, The London congestion charge. J. Econ. Perspect. 20(4), 157–176 (2006)

    Google Scholar 

  72. L.J. Leblanc, Mathematical Programming Algorithms for Large Scale Network Equilibrium and Network Design Problems (Northwestern University, Evanston, 11973)

    Google Scholar 

  73. L.J. LeBlanc, K. Farhangian, Efficient algorithms for solving elastic demand traffic assignment problems and mode split-assignment problems. Transport. Sci. 15(4), 306 (1981)

    MathSciNet  Google Scholar 

  74. L.J. LeBlanc, R.V. Helgason, D.E. Boyce, Improved efficiency of the Frank–Wolfe algorithm for convex network programs. Transport. Sci. (Institute for Operations Research and the Management Sciences) 19(4), 445–462 (1985)

    MathSciNet  MATH  Google Scholar 

  75. K. LeBlanc Edward, J. Larry, An efficient approach to solving the road network equilibrium traffic assignment problem. Transport. Res. 9(5), 309–318 (1975), Elsevier

    Google Scholar 

  76. H. Lévy-Lambert, Tarification des services à qualité variable: application aux péages de circulation. Econometrica 36(3–4), 564–574 (1968)

    Google Scholar 

  77. J. Linderoth, T. Ralphs, Noncommercial Software for Mixed Integer Linear Programming. Optimization Online, 2005

    Google Scholar 

  78. D.G. Luenberger, Investment Science (Oxford University Press, New York, 1998)

    Google Scholar 

  79. L.-G. Mattsson, Road pricing: consequences for traffic, congestion and location, in Road Pricing, the Economy and the Environment, ed. by C. Jensen-Butler, B. Sloth, M.M. Larsen, B. Madsen, O.A. Nielsen, (Springer, Berlin, 2008), pp. 29–48

    Google Scholar 

  80. T.L. Magnanti, Combinatorial optimization and vehicle fleet planning: perspectives and prospects. Networks (Wiley Online Library) 11(2), 179–213 (1981)

    MathSciNet  Google Scholar 

  81. R.S. Markovits, Second-best theory and law & economics: an introduction. Chi.-Kent L. Rev. 73, 3 (1997)

    Google Scholar 

  82. K. McAloon, C. Tretkoff, G. Wetzel, Sports league scheduling, in Proceedings of Third Ilog International Users Meeting, Paris, July 1997

    Google Scholar 

  83. D.K. Merchant, G. Nemhauser, A model and an algorithm for the dynamic traffic assignment problem. Transport. Sci. 12, 183–199 (1978)

    Google Scholar 

  84. D.K. Merchant, G. Nemhauser, Optimality conditions for a dynamic traffic assignment model. Transport. Sci. 12, 200–207 (1978)

    Google Scholar 

  85. D.L. Miller, A matching based exact algorithm for capacitated vehicle routing problems. INFORMS J. Comput. 7(1), 1–9 (1995)

    MATH  Google Scholar 

  86. J.D. Murchland, Road network traffic distribution in equilibrium. Math. Model Soc. Sci. 8, 145–183 (1970)

    Google Scholar 

  87. K. Murty, Solving the fixed charge problem by ranking the extreme points. Oper. Res. (16), 268–279 (1968)

    MATH  Google Scholar 

  88. A. Nahapetyan, S. Langpopanich, Discrete-time dynamic traffic assignment problem with periodic planning horizon: system optimum. J. Global Optim. 38(1), 41–60 (2007)

    MathSciNet  MATH  Google Scholar 

  89. A. Nahapetyan, P.M. Pardalos, Adaptive dynamic cost updating procedure for solving fixed charge network flow problems. Comput. Optim. Appl. 39(1), 37–50 (2008)

    MathSciNet  MATH  Google Scholar 

  90. G. Nemhauser, M. Trick, Scheduling a major college basketball conference, Georgia Tech., Technical Report, 1997

    Google Scholar 

  91. S. Nguyen, An algorithm for the traffic assignment problem. Transport. Sci. 8(3), 203 (1974)

    Google Scholar 

  92. S. Nguyen, others, Equilibrium traffic assignment for large scale transit networks. Eur. J. Oper. Res. 37(2), 176–186 (1988)

    MATH  Google Scholar 

  93. S. Nguyen, L. James, TRAFFIC: An Equilibrium Traffic Assignment Program (University of Montreal, Montreal, 1975)

    Google Scholar 

  94. W. Ochoa-Rosso, Applications of Discrete S Optimization Techniques to Cq Capital Investment and Network Synthesis Problems (1968)

    Google Scholar 

  95. W. Ochoa-Rosso, A. Silva, Optimum project addition in urban transportation networks via descriptive traffic assignment models. Research Report R, vol. 44, 1968

    Google Scholar 

  96. T. Oksanen, A. Visala, Coverage path planning algorithms for agricultural field machines. J. Field Robot. 26(8), 651–668 (2009)

    MATH  Google Scholar 

  97. K.R. Overgaard, Urban transportation planning traffic estimation. Traffic Q. 21(2) (1967)

    Google Scholar 

  98. P.M. Pardalos, M.G.C. Resende, Handbook of Applied Optimization (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  99. P. Patriksson, The traffic assignment problem: models and methods (1994)

    Google Scholar 

  100. A.C. Pigou, The Economics of Welfare, vol. 2 (Cosimo, New York, 2006)

    Google Scholar 

  101. J. Renaud, F.F. Boctor, G. Laporte, A fast composite heuristic for the symmetric traveling salesman problem. INFORMS J. Comput. 8, 134–143 (1996)

    MATH  Google Scholar 

  102. T.M. Ridley, An Investment Policy to Reduce the Travel Time in a Transportation Network (Operations Research Center, University of California, Berkeley, 1965)

    Google Scholar 

  103. M.G. Richards, Congestion harging in London, in The Policy and the Politics (Palgrave Macmillan, Basingstoke, 2006)

    Google Scholar 

  104. T. Roughgarden, Selfish Routing and the Price of Anarchy (MIT, Cambridge, 2005)

    Google Scholar 

  105. T. Roughgarden, E. Tardos, Bounding the inefficiency of equilibria in nonatomic congestion games. Games Econ. Behav. 47(2), 389–403 (2002)

    MathSciNet  Google Scholar 

  106. D.M. Ryan, B.A. Foster, An integer programming approach to scheduling, in Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling (1981), pp. 269–280

    Google Scholar 

  107. D.M. Ryan, C. Hjorring, F. Glover, Extensions of the petal method for vehicle routing. J. Oper. Res. Soc. 44, 289–296 (1993)

    MATH  Google Scholar 

  108. A. Sorokin, V. Boginski, A. Nahapetyan, P.M. Pardalos, Computational risk management techniques for fixed charge network flow problems with uncertain arc failures. J. Comb. Optim. 25(1), 99–122 (2013)

    MathSciNet  MATH  Google Scholar 

  109. P.A. Steembrink, Optimization of Transport Networks (Wiley, 1979)

    Google Scholar 

  110. P. Toth, D. Vigo (eds.), The Vehicle Routing Problem, vol. 9 (Society for Industrial and Applied Mathematics, 1987)

    Google Scholar 

  111. T. Tsekeris, S. Voß, Design and evaluation of road pricing. Netnomics 10(1), 5–52 (2009)

    Google Scholar 

  112. E.J. Van Henten, J. Hemming, B.A. Van Tujil, J.G. Kornet, J. Bontsema, Collision-free motion planning for a cucumber picking robot. Biosyst. Eng. 86(2), 135–144 (2003)

    Google Scholar 

  113. J.A. Ventura, D.W. Hearn, Restricted simplicial decomposition for convex constrained problems. Math. Program. 59(1), 71–85 (1993)

    MathSciNet  MATH  Google Scholar 

  114. T.E. Verhoef, Second-best congestion pricing in general static transportation networks with elastic demands. Reg. Sci. Urban Econ. 32, 281–310 (2002)

    Google Scholar 

  115. T.E. Verhoef, P. Nijkamp, P. Rietveld, Second-best congestion pricing: the case of an untolled alternative. J. Urban Econ. 40(3), 279–302 (1996)

    MATH  Google Scholar 

  116. W.S. Vickrey, Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)

    Google Scholar 

  117. B. Von Hohenbalken, Simplicial decomposition in nonlinear programming algorithms. Math. Program. 13, 49–68 (1977)

    MATH  Google Scholar 

  118. S. Vougioukas, S. Blackmore, J. Nielsen, S. Fountas, A two-stage optimal motion planner for autonomous agricultural vehicles. Precis. Agr. 7, 361–377 (2006)

    Google Scholar 

  119. J.G. Wardrop, Some theoretical aspects of road traffic research. Oper. Res. 4(4), 72–73 (1953)

    Google Scholar 

  120. S.T. Waller, A.K. Ziliaskopoulos, A combinatorial user optimal dynamic traffic assignment algorithm. Ann. Oper. Res. 144(1), 249–261 (2006)

    MathSciNet  MATH  Google Scholar 

  121. B.-W. Wie, R.L. Tobin, D. Bernstein, T.L. Friesz, A comparison of system optimum and user equilibrium dynamic traffic assignments with schedule delays. Transport. Res. C 3(6), 389–411 (1995)

    Google Scholar 

  122. W.I. Zangwill, Convergence conditions for nonlinear programming algorithms. Manag. Sci. 16(1), 1–13 (1969)

    MathSciNet  MATH  Google Scholar 

  123. Q.P. Zheng, A. Arulselvan, Discrete time dynamic traffic assignment models and solution algorithm for managed lanes. J. Global Optim. 51(1), 47–68 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chrysafis Vogiatzis or Panos M Pardalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Vogiatzis, C., Pardalos, P.M. (2013). Combinatorial Optimization in Transportation and Logistics Networks. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_63

Download citation

Publish with us

Policies and ethics