Skip to main content

Lidar Remote Sensing

  • Reference work entry
Handbook of Satellite Applications

Abstract

Light detection and ranging (LiDAR), also known as laser detection and ranging (LaDAR) or optical radar, is an active remote sensing technique which uses electromagnetic energy in the optical range to detect an object (target), determine the distance between the target and the instrument (range), and deduce physical properties of the object based on interaction of the radiation with the target through phenomena such as scattering, absorption, reflection, and fluorescence. LiDAR has many applications in the scientific, engineering, and military fields. LiDAR sensors have been deployed at fixed terrestrial stations, in mobile surface and subsurface vehicles, lighter-than-air crafts, fixed and rotary wing aircraft, satellites, interplanetary probes, and planetary landers and rovers. This chapter provides a high-level overview of the principles of operation of LiDAR technology and its main applications performed from space-based platforms such as satellite altimetry, atmospheric profiling, and on-orbit imaging and ranging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W. Abdalati, H.J. Zwally, R. Bindschadler, B. Csatho, S.L. Farrell, H.A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, C. Webb, The ICESat-2 laser altimetry mission. Proc. IEEE 98(5), 735–751 (2010)

    Article  Google Scholar 

  • J.B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, P. Liiva, Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys. Res. Lett. 32, L21S02 (2005)

    Google Scholar 

  • C.O. Alley, P.L. Bender, R.F. Chang, D.G. Currie, R.H. Dicke, J.E. Faller, W.M. Kaula, G.J.F. MacDonald, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, D.T. Wilkingson, Irwin Winer, Walter Carrion, Tom Johnson, Paul Spadin, Lloyd Robinson, E. Joseph Wampler, Donald Wiebrr, E. Silverberg, C. Steggerda, J. Mullendore, J. Bayner, W. Williams, Brian Warner, Harvey Richardson, and B. Bopp, Laser ranging retroreflector. Section 7, of Apollo 11 Preliminary Science Report. NASA SP 214, 1969

    Google Scholar 

  • A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, A.G. Straume, Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations. Appl. Opt. 46, is. 26, 6606–6622 (2007)

    Google Scholar 

  • M.D. Behn, M.T. Zuber, A comparison of ocean topography derived from the Shuttle Laser Altimeter-01 and TOPEX/POSEIDON. IEEE Trans. Geosci. Rem. Sens. 38(3), 1425–1438 (2000)

    Article  Google Scholar 

  • P.L. Bender, D.G. Currie, R.H. Dickey, D.H. Eckhardt, J.E. Faller, W.M. Kaula, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, E.C. Silverberg, D.T. Wilkinson, J.G. Williams, C.O. Alley, The lunar ranging experiment. Science 182(4109), 229–238 (1973). New Series

    Article  Google Scholar 

  • J.L. Bufton, Laser altimetry measurements from aircraft and spacecrat. Proc. IEEE 77(3), 463–477 (1989)

    Article  Google Scholar 

  • C.C. Carabajal, D.J. Hardin, S. B. Luthcke, W. Fong, S. C. Rowton, J.J. Frawley, Processing of shuttle laser altimeter range and return pulse data in support of SLA-02, in Proceedings of the ISPRS Workshop Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers, Portland, 1999

    Google Scholar 

  • W.E. Carter, The lunar laser ranging pointing problem. Unpublished doctoral dissertation, University of Arizona, Tucson, 1973

    Google Scholar 

  • W.E. Carter, R. L. Shrestha, K.C. Slatton, Geodetic laser scanning. Phys Today. 60(12) (2007)

    Google Scholar 

  • J.F. Cavanaugh, J.C. Smith, X. Sun, A.E. Bartels, L. Ramos-Izquierdo, D.J. Krebs, J.F. McGarry, R. Trunzo, A.M. Novo-Gradac, J.L. Britt, J. Karsh, R.B. Katz, A.T. Lukermire, R. Szymkiewicz, D.L. Berry, J.P. Swinski, G.A. Neumann, M.T. Zuber, D. Smith, The Mercury laser altimeter instrument for the MESSENGER mission. Space Sci Rev 131(1–4), 451–479 (2007)

    Article  Google Scholar 

  • M.L. Chanin, A. Hauchecorne, C. Malique, D. Nedeljkovic, J.E. Blamont, M. Desbois, G. Tulinov and V. Melnikov, “Premiers résultats du lidar Alissa embarqué à bord de la station Mir,” Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science. 328(6), 359–366 (1999)

    Google Scholar 

  • T.D. Colea, A.F. Chenga, M. Zuberb and D. Smith, “The Laser Rangefinder on the near Earth Asteroid Rendezvous spacecraft,” Acta Astronautica, in Second IAA International Conference on Low-Cost Planetary Missions, Laurel, vol. 39, Issue no 1–4, pp. 303–313, July-August 1996

    Google Scholar 

  • T.K. Cossio, K.C. Slatton, W.E. Carter, K.Y. Shrestha, D. Harding, Predicting small target detection performance of Low-SNR airborne LiDAR. IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens. 3(4), 672–688 (2010)

    Article  Google Scholar 

  • A. Deslauriers, I. Showalter, A. Montpool, R. Taylor, I. Christie, “Shuttle TPS inspection using triangulation scanning technology,” Spaceborne sensors II. Proc. SPIE 5798, 26–33 (2005)

    Article  Google Scholar 

  • J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Lunar laser ranging: a continuing legacy of the apollo program. Science 265(5171), 482–490 (1994). New Series

    Article  Google Scholar 

  • A. Donnellan, P. Rosen, J. Ranson, H. Zebker, Deformation, ecosystem structure, and dynamics of ice (DESDynI), in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Honolulu, 2008

    Google Scholar 

  • E. Dupuis, J.C. Piedboeuf and E. Martin, Canadian activities in intelligent robotic systems: an overview, in Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space, Hollywood, CA, USA, Feb 2008

    Google Scholar 

  • J.J. Degnan, 30 Years of SLR (invited paper), Proc. of the 9th International Workshop on Laser Ranging Instrumentation, Australian Government Publishing Service, Canberra, p. 8, 1994, http://ilrs.gsfc.nasa.gov/docs/ThirtyYearsOfSatelliteLaserRanging.pdf

  • Y. Durand, A. Hélière, P. Bensi, J.-L. Bézy, and R. Meynart, Lidars in ESA’s earth explorer missions, in 14th Coherent Laser Radar Conference, Snowmass, 2007

    Google Scholar 

  • C. English, S. Zhu, C. Smith, S. Ruel, I. Christie, Tridar: a hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies, in The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. ed. by B. Battrick. ESA SP-603. European Space Agency, München, 2005

    Google Scholar 

  • J.C. Fernandez-Diaz, Scientific applications of the mobile terrestrial laser scanner (M-TLS) system, M.S. thesis, Department of Civil Engineering, University of Florida, Gainesville, Florida, 2007, http://purl.fcla.edu/fcla/etd/UFE0021101. Accessed Feb 2011

  • G. Fiocco, L.D. Smullin, Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar. Nature 199, 1275–1276 (1963)

    Article  Google Scholar 

  • J. Garvin, J. Bufton, J. Blair, D. Harding, S. Luthcke, J. Frawley, D. Rowlands, Observations of the Earth’s topography from the shuttle laser altimeter (SLA): laser-pulse echo-recovery measurements of terrestrial surfaces. Phys. Chem. Earth 23(9–10), 1053–1068 (1998)

    Article  Google Scholar 

  • Hamamatsu Corporation, Photon counting using photomultiplier tubes, 2005, http://sales.hamamatsu.com/assets/applications/ETD/PhotonCounting_TPHO9001E04.pdf

  • D.J. Harding, D.B. Gesch, C.C. Carabajal, and S.B. Luthcke, Application of the shuttle laser altimeter in an accuracy assessment of GTOP30, a global 1-kilometer digital elevation model, in Proceedings of the ISPRS Workshop Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers, Portland, Nov 1999

    Google Scholar 

  • D.W. Harris, J.H. Berbert, NASA/MOTS optical observations of the ANNA 1B satellite, NASA Technical Note D-3174, Jan 1966

    Google Scholar 

  • W.A. Heiskanen, H. Moritz, Physical Geodesy (Freeman, San Francisco, 1967)

    Google Scholar 

  • E.O. Hulburt, Observations of a searchlight beam to an altitude of 28 kilometers. J. Opt. Soc. Am. 27, 377–382 (1937)

    Article  Google Scholar 

  • A. Javan, W.R. Bennett, D.R. Herrott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He–Ne mixture. Phys. Rev. Lett. 6, 106–110 (1961)

    Article  Google Scholar 

  • E.A. Johnson, R.C. Meyer, R.E. Hopkins, W.H. Mock, The measurement of light scattered by the upper atmosphere from a search-light beam. J. Opt. Soc. Am. 29, 512–517 (1939)

    Article  Google Scholar 

  • JPL, Rover camera instrument description, 1997, http://starbase.jpl.nasa.gov/mpfr-m-rvreng-2_3-edr_rdr-v1.0/mprv_0001/document/rcinst.htm. Accessed Feb 2011

  • K. Kaufmann, Choosing your Detector, OE Magazine, March 2005

    Google Scholar 

  • W.M. Kaula, G. Schubert, R.E. Lingenfelter, W.L. Sjogren, W.R. Wollenhaupt, Apollo laser altimetry and inferences as to lunar structure, in Lunar Science Conference, 5th, Houston, Tex., 18 Mar 1974, Proceedings, vol. 3, (A75-39540 19-91) Pergamon Press, New York, pp. 3049–3058, 1974

    Google Scholar 

  • L. Le Hors, Y. Toulemont, A. Hélière, “Design and Development of the Backscatter Lidar Atlid for Earthcare”, proceedings of the International Conference on Space Optics (Toulouse, France, 2008)

    Google Scholar 

  • G.G. Matvienko, V.E. Zuev, V.S. Shamanaev, G.P. Kokhanenko, A.M. Sutormin, A.I. Buranskii, S.E. Belousov, A.A. Tikhomirov, Lidar BALKAN-2 for the space platform ALMAZ-1B, Lidar Techniques for Remote Sensing, in Proceedings of SPIE, vol. 2310, 1994, http://spie.org/x648.html?product_id=195859

  • F.J. McClung, R.W. Hellwarth, Giant optical pulsations from Ruby. J. Appl. Phys. 33(3), 828–829 (1962)

    Article  Google Scholar 

  • J. McGarry, T. Zagwodzki, A brief history of satellite laser ranging: 1964 – present. Published by the Crustal Dynamics Data Information System (CDDIS), NASA Goddard Space Flight Center, Greenbelt, Maryland (2005) http://cddis.nasa.gov/slr2000/docs/gsfcslr_jm0504.pdf. Accessed Feb 2011

  • J.K. Miller, A.S. Konopliv, P.G. Antreasian, J.J. Bordi, S. Chesley, C.E. Helfrich, W.M. Owen, T.C. Wang, B.G. Williams, D.K. Yeomans, D.J. Scheeres, Determiantion of shape, gravity and rotational state of Asteroid 433 Eros. Icarus 155, 3–17 (2002)

    Article  Google Scholar 

  • NASA, Mars topography, http://mola.gsfc.nasa.gov/topography.html

  • NASA, The space shuttle’s return to flight, mission STS-114 press kit (2005)

    Google Scholar 

  • National Research Council, “Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond,” Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future (The National Academies Press, Washington, DC, 2007). ISBN 0-309-10387-8

    Google Scholar 

  • NEPTEC, Tridar, http://www.neptec.com/media/brochures/Canadian/Space-TriDAR.pdf

  • M. Nimelman, J. Tripp, A. Allen, D.M. Hiemstra, S.A. McDonald, Spaceborne scanning lidar system (SSLS) upgrade path. Proc. SPIE 6201, 62011V-1–62U11V-10 (2006)

    Google Scholar 

  • J.C. Piedboeuf, E. Martin, M. Doyon, On-orbit servicing in Canada: advanced developments and demonstrations, in Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation ASTRA, Noordwick, 2004

    Google Scholar 

  • L. Ramos-Izquierdo, V.S. Scott III, J. Connelly, S. Schmidt, W. Mamakos, J. Guzek, C. Peters, P. Liiva, M. Rodriguez, J. Cavanaugh, H. Riris, Optical system design and integration of the Lunar orbiter laser altimeter. Appl. Opt. 48, 3035–3049 (2009)

    Article  Google Scholar 

  • F.I. Robertson, W.M. Kaula, Apollo 15 laser altimeter, Part D, Section 25, Apollo 15 Preliminary Science Report. NASA SP-289, 1972

    Google Scholar 

  • B.E. Schutz, H.J. Zwally, C.A. Shuman, D. Hancock, J.P. DiMarzio, Overview of the ICESat mission. Geophys. Res. Lett. 32, L21S01 (2005)

    Article  Google Scholar 

  • J. Shan, C.K. Toth (eds.), Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, Boca Raton, 2009)

    Google Scholar 

  • H. Simons, Secret mapping by satellite, New Sci. 21(381) (1964)

    Google Scholar 

  • D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, Topography of the Moon from the Clementine lidar. J Geophys. Res. 102(E1), 1591–1611 (1997)

    Article  Google Scholar 

  • D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res 106(E10), 23689–23722 (2001)

    Article  Google Scholar 

  • D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, E. Mazarico, M.H. Torrence, J.F. McGarry, D.D. Rowlands, J.W. Head III, T.H. Duxbury, O. Aharonson, P.G. Lucey, M.S. Robinson, O.S. Bamouin, J.F. Cavanaugh, X. Sun, P. Liiva, D. Mao, K.C. Smith, A.E. Bartels, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010)

    Article  Google Scholar 

  • C.L. Smithpeter, R.O. Nellums, S.M. Lebien, G. Studor, Miniature high-resolution laser radar operating at video rates. Proc. SPIE 4035, 279–286 (2000)

    Article  Google Scholar 

  • L.D. Smullin, G. Fiocco, Optical echoes from the Moon. Nature 194, 1267 (1962)

    Article  Google Scholar 

  • STS-105 Shuttle press kit, 2001, http://www.shuttlepresskit.com/sts-105/index.htm

  • G. Suna, K.J. Ranson, V.I. Kharuk, K. Kovacs, Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Rem. Sens. Environ. 88(4), 401–411 (2003)

    Article  Google Scholar 

  • E.H. Synge, Phil. Mag. 9, 1014–20 (1930)

    MATH  Google Scholar 

  • N. Taylor, LASER: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War (Simon & Schuster, New York, 2000)

    Google Scholar 

  • The International Laser Ranging Service, http://ilrs.gsfc.nasa.gov/. Accessed February 2011

  • N. Thomasa, T. Spohnb, J.-P. Barriotc, W. Benza, G. Beutlerd, U. Christensene, V. Dehantf, C. Fallnichg, D. Giardinih, O. Groussini, K. Gundersona, E. Hauberb, M. Hilchenbache, L. Iessj, P. Lamyk, L.-M. Laral, P. Lognonnem, J.J. Lopez-Morenol, H. Michaelisb, J. Oberstb, D. Resendesn, J.-L. Reynaudk, R. Rodrigol, S. Sasakio, K. Seiferlina, M. Wieczorekm, J. Whitbya, The BepiColombo laser altimeter (BELA): concept and baseline design. Planet. Space Sci. 55(10), 1398–1413 (2007)

    Article  Google Scholar 

  • M.A. Tuve, E.A. Johnson, O.R. Wulf, A new experimental method for study of the upper atmosphere. J. Terrest. Magnet. 40, 452–454 (1935)

    Article  Google Scholar 

  • J.R. Vetter, “Fifty years of orbit determination, development of modern astrodynamic methods, Johns Hopkins APL Tech. Dig. 27, 3 239–252 (2007)

    Google Scholar 

  • U. Wandinger, Introduction to Lidar, in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, ed. by C. Weitkamp (Springer, New York, 2005), pp. 1–18

    Google Scholar 

  • M.J. Weber (ed.), Handbook of LASERS (CRC Press, Baco Raton, 2001). ISBN 978-1-4200-5017-2

    Google Scholar 

  • C. Weitkamp (ed.), Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (New York, Springer, 2005)

    Google Scholar 

  • C. Werner, G. Kokhanenko, G. Matvienko, V. Shamanaev, Y. Grachjov, I. Znamenskii, U.G. Oppel, Spaceborne laser rangefinder “LORA” used as a cloud lidar. Opt. Rev. 2(3), 221–224 (1995)

    Article  Google Scholar 

  • C. Werner, Spaceborne lidar mission, past and future, in Proceedings Conference on Lasers and Electro-optics Europe, CLEO/Europe, Hamburg, pp. 212, Sep 1996

    Google Scholar 

  • J. Whiteway, J.M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, C. Cook, Lidar on the Phoenix mission to Mars. J. Geophys. Res. 113, E00A08, 2008

    Google Scholar 

  • J. Whiteway, L. Komguem, C. Dickinson, Observations of Mars atmospheric dust and clouds with the Lidar instrument on the phoenix mission, in Abstract on the Forth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, Feb 2011

    Google Scholar 

  • D.M. Winker, R.H. Couch, M.P. McCormick, An overview of LITE: NASA’s Lidar in-space technology experiment. Proc. IEEE 84(2), 164–180 (1996)

    Article  Google Scholar 

  • D.M. Winker, W.H. Hunt, C.A. Hostetler, Status and performance of the CALIOP lidar, in Laser Radar Techniques for Atmospheric Sensing (Proceedings of the SPIE), vol. 5575, ed. by U.N. Singh, pp. 8–15, Maspalomas, Gran Canaria, Spain, 2004

    Google Scholar 

  • W.R. Wollenhaupt, W.L. Sjogren, Apollo 16 laser altimeter, Chapter 30, Part A, Apollo 16 Preliminary Science Report SP-315, 1972

    Google Scholar 

  • W.R. Wollenhaupt, W.L. Sjogren, R.E. Lingenfelter, G. Schubert, and W.M. Kaula, Apollo 17 laser altimeter, Chapter 33, Part E, Apollo 17 Preliminary Science Report SP-330, 1973

    Google Scholar 

  • A.W. Yua, M.A. Stephen, S.X. Li, G.B. Shawa, A. Seasa, E. Dowdyea, E. Troupakib, P. Liivab, D. Pouliosc, K. Mascetti, Space laser transmitter development for ICESat-2 mission. Proc. SPIE 7578, 757–809 (2010)

    Google Scholar 

  • M.T. Zuber, D.E. Smith, A.F. Cheng, J.B. Garvin, O. Aharonson, T.D. Cole, P.J. Dunn, Y. Guo, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, M.H. Torrance, The shape of 433 Eros from the NEAR-shoemaker laser rangefinder. Science 289, 2097 (2000)

    Article  Google Scholar 

  • M.T. Zuber, D.E. Smith, S.C. Solomon, R.J. Phillips, S.J. Peale, J.W. Head III, S.A. Hauck II, R.L. McNutt Jr., J. Oberst, G.A. Neumann, F.G. Lemoine, X. Sun, O. Barnouin-Jha, J.K. Harmon, Laser altimeter observations from MESSENGER’s first Mercury Flyby. Science 321, 77 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Fernandez Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Fernandez Diaz, J.C., Carter, W.E., Shrestha, R.L., Glennie, C.L. (2013). Lidar Remote Sensing. In: Pelton, J.N., Madry, S., Camacho-Lara, S. (eds) Handbook of Satellite Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7671-0_44

Download citation

Publish with us

Policies and ethics