Skip to main content

Color Invariants for Object Recognition

  • Chapter
  • First Online:
Advanced Color Image Processing and Analysis

Abstract

Color is a very important cue for object recognition, which can help increase the discriminative power of an object-recognition system and also make it more robust to variations in the lighting and imaging conditions. Nonetheless, even though most image acquisition devices provide color data, a lot of object-recognition systems rely solely on simple grayscale information. Part of the reason for this is that although color has advantages, it also introduces some complexities. In particular, the RGB values of a digital color image are only indirectly related to the surface “color” of an object, which depends not only on the object’s surface reflectance but also on such factors as the spectrum of the incident illumination, surface gloss, and the viewing angle. As a result, there has been a great deal of research into color invariants that encode color information but at the same time are insensitive to these other factors. This chapter describes these color invariants, their derivation, and their application to color-based object recognition in detail. Recognizing objects using a simple global image matching strategy is generally not very effective since usually an image will contain multiple objects, involve occlusions, or be captured from a different viewpoint or under different lighting conditions than the model image. As a result, most object-recognition systems describe the image content in terms of a set of local descriptors—SIFT, for example—that describe the regions around a set of detected keypoints. This chapter includes a discussion of the three color-related choices that need to be made when designing an object-recognition system for a particular application: Color-invariance, keypoint detection, and local description. Different object-recognition situations call for different classes of color invariants depending on the particular surface reflectance and lighting conditions that will be encountered. The choice of color invariants is important because there is a trade-off between invariance and discriminative power. All unnecessary invariance is likely to decrease the discriminative power of the system. Consequently, one part of this chapter describes the assumptions underlying the various color invariants, the invariants themselves, and their invariance properties. Then with these color invariants in hand, we turn to the ways in which they can be exploited to find more salient keypoints and to provide richer local region descriptors. Generally but not universally, color has been shown to improve the recognition rate of most object-recognition systems. One reason color improves the performance is that including it in keypoint detection increases the likelihood that the region surrounding the keypoint will contain useful information, so descriptors built around these keypoints tend to be more discriminative. Another reason is that color-invariant-based keypoint detection is more robust to variations in the illumination than grayscale-based keypoint detection. Yet another reason is that local region descriptors based on color invariants more richly characterize the regions, and are more stable relative to the imaging conditions, than their grayscale counterparts.

What is without form is without color

Jacques Ferron

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Hakim A, Farag A (2006) Csift: A sift descriptor with color invariant characteristics. In: 2006 IEEE computer society conference on computer vision and pattern recognition, New York, USA, vol 2, pp 1978–1983

    Google Scholar 

  2. Alexe B, Deselaers T, Ferrari V (2010) What is an object? IEEE computer society conference on computer vision and pattern recognition 4:73–80

    Article  Google Scholar 

  3. Ancuti C, Bekaert P (2007) Sift-cch: Increasing the sift distinctness by color co-occurrence histograms. In: Proceedings of the 5th international symposium on image and signal processing and analysis, Istambul, Turkey, pp 130–135

    Google Scholar 

  4. Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  5. Barnard K, Martin L, Coath A, Funt B (2002) A comparison of computational color constancy algorithms. II. Experiments with image data. IEEE Trans Image Process 11(9):985–996

    Google Scholar 

  6. Base caltech. URL http://www.vision.caltech.edu/html-files/archive.html

  7. Base graz02. URL http://www.emt.tugraz.at/~pinz/data/GRAZ_02/

  8. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Surf: Speeded up robust features. Comput Vis Image Understand 110:346–359

    Article  Google Scholar 

  9. Beaudet PR (1978) Rotationally invariant image operators. In: Proceedings of the International Conference on Pattern Recognition, Kyoto, Japan, pp 579–583

    Google Scholar 

  10. Beckmann P, Spizzichino A (1987) The scattering of electromagnetic waves from rough surfaces, 2nd edn. Artech House Inc, Norwood, USA

    Google Scholar 

  11. Bosch A, Zisserman A, Munoz X (2006) Scene classification via plsa. In: Proceedings of the European conference on computer vision, Graz, Austria, pp 517–530

    Google Scholar 

  12. Burghouts G, Geusebroek JM (2009) Performance evaluation of local colour invariants. Comput Vis Image Understand 113(1):48–62

    Article  Google Scholar 

  13. Canny J (1986) Computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  14. Chang P, Krumm J (1999) Object recognition with color cooccurrence histograms. In: In IEEE conference on computer vision and pattern recognition (CVPR), vol 2, p 504

    Google Scholar 

  15. Chen X, Hu X, Shen X (2009) Spatial weighting for bag-of-visual-words and its application in content-based image retrieval. In: Advances in knowledge discovery and data mining, lecture notes in computer science, vol 5476, pp 867–874

    Google Scholar 

  16. Chu DM, Smeulders AWM (2010) Color invariant surf in discriminative object tracking. In: ECCV workshop on color and reflectance in imaging and computer vision, Heraklion, Crete, Greece

    Google Scholar 

  17. Ciocca G, Marini D, Rizzi A, Schettini R, Zuffi S (2001) On pre-filtering with retinex in color image retrieval. In: Proceedings of the SPIE Conference on Internet Imaging II, San Jos, California, USA, vol 4311, pp 140–147

    Google Scholar 

  18. Dahl A, Aanaes H (2008) Effective image database search via dimensionality reduction. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop, Anchorage, Alaska, pp 1–6

    Google Scholar 

  19. Dinet E, Kubicki E (2008) A selective attention model for predicting visual attractors. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, États-Unis, pp 697–700

    Google Scholar 

  20. Elsayad I, Martinet J, Urruty T, Djeraba C (2010) A new spatial weighting scheme for bag-of-visual-words. In: Proceedings of the international workshop on content-based multimedia indexing (CBMI 2010), Grenoble, France, pp 1 –6

    Google Scholar 

  21. Farag A, Abdel-Hakim A (2004) Detection, categorization and recognition of road signs for autonomous navigation. In: Proceedings of Advanced Concepts in Intelligent Vision Systems, Brussel, Belgium, pp 125–130

    Google Scholar 

  22. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59:167–181

    Article  Google Scholar 

  23. Finlayson G, Hordley S (2001) Colour constancy at a pixel. J Opt Soc Am 18(2):253–264

    Article  Google Scholar 

  24. Finlayson GD, Trezzi E (2004) Shades of gray and colour constancy. In: Proceeding color imaging conference, Scottsdale, Arizona, pp 37–41

    Google Scholar 

  25. Finlayson G, Drew M, Funt B (1994) Color constancy : generalized diagonal transforms suffice. J Opt Soc Am 11(A):3011–3020

    Google Scholar 

  26. Finlayson GD, Drew MS, Funt BV (1994b) Spectral sharpening : sensor transformations for improved color constancy. J Opt Soc Am 11(A):1553–1563

    Google Scholar 

  27. Finlayson G, Chatterjee S, Funt B (1995) Color angle invariants for object recognition. In: Proceedings of the 3rd IS&T/SID color imaging conference, Scottsdale, Arizona, pp 44–47

    Google Scholar 

  28. Finlayson G, Schiele B, Crowley J (1998) Comprehensive colour image normalization. Lecture notes in computer science 1406:475–490. URL citeseer.nj.nec.com/finlayson98comprehensive.html

  29. Finlayson G, Hordley S, Hubel P (2001) Color by correlation: a simple, unifying framework for color constancy. IEEE Trans Pattern Anal Mach Intell 23(11):1209–1221

    Article  Google Scholar 

  30. Finlayson G, Drew M, Lu C (2004) Intrinsic images by entropy minimization. In: Proceedings of the European conference on computer vision, Prague, Czech Republic, pp 582–595

    Google Scholar 

  31. Finlayson G, Hordley S, Schaefer G, Tian GY (2005) Illuminant and device invariant colour using histogram equalisation. Pattern Recogn 38:179–190

    Article  Google Scholar 

  32. Forssén PE (2007) Maximally stable colour regions for recognition and matching. In: IEEE conference on computer vision and pattern recognition, IEEE computer society, IEEE, Minneapolis, USA

    Google Scholar 

  33. Forssén P, Moe A (2009) View matching with blob features. Image Vis Comput 27(1–2): 99–107

    Article  Google Scholar 

  34. Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. In: Proceeding of the MICCAI98 lecture notes in computer science, Berlin, vol 1496, pp 130–137

    Google Scholar 

  35. Funt B, Finlayson G (1995) Color constant color indexing. IEEE Trans Pattern Anal Mach Intell 17(5):522–529

    Article  Google Scholar 

  36. Funt B, Cardei VC, Barnard K (1999) Method of estimating chromaticity of illumination using neural networks. In: United States Patent, USA, vol 5,907,629

    Google Scholar 

  37. Gabriel P, Hayet JB, Piater J, Verly J (2005) Object tracking using color interest points. In: IEEE conference on advanced video and signal based surveillance, IEEE computer society, Los Alamitos, CA, USA, vol 0, pp 159–164

    Google Scholar 

  38. Gao K, Lin S, Zhang Y, Tang S, Ren H (2008) Attention model based sift keypoints filtration for image retrieval. In: Proceedings of seventh IEEE/ACIS international conference on computer and information science, Washington, DC, USA, pp 191–196

    Google Scholar 

  39. Geusebroek J (2000) Color and geometrical structure in images. PhD thesis, University of Amsterdam

    Google Scholar 

  40. Geusebroek J (2006) Compact object descriptors from local colour invariant histograms. In: British machine vision conference, vol 3, pp 1029–1038

    Google Scholar 

  41. Geusebroek JM, van den Boomgaard R, Smeulders AWM, Dev A (2000) Color and scale: the spatial structure of color images. In: Proceedings of the European conference on computer vision, Dublin, Ireland, pp 331–341

    Google Scholar 

  42. Geusebroek JM, van den Boomgaard R, Smeulders AWM, Geerts H (2001) Color invariance. IEEE Trans Pattern Anal Machine Intell 23(12):1338–1350

    Article  Google Scholar 

  43. Gevers T, Smeulders A (1999) Color-based object recognition. Pattern Recogn 32:453–464

    Article  Google Scholar 

  44. Gevers T, Stokman H (2004) Robust histogram construction from color invariants for object recognition. IEEE Trans Pattern Anal Mach Intell 23(11):113–118

    Article  Google Scholar 

  45. Goedem T, Tuytelaars T, Gool LV (2005) Omnidirectional sparse visual path following with occlusion-robust feature tracking. In: 6th workshop on omnidirectional vision, camera networks and non-classical cameras, OMNIVIS05, in Conjunction with ICCV 2005, Beijing, China

    Google Scholar 

  46. Gouet V, Montesinos P, Deriche R, Pel D (2000) Evaluation de dtecteurs de points d’intrt pour la couleur. In: Proceeding congrs Francophone AFRIF-AFIA, Reconnaissance des Formes et Intelligence Artificielle, Paris, vol 2, pp 257–266

    Google Scholar 

  47. Hamilton Y, Gortler S, Zickler T (2008) A perception-based color space for illumination invariant image processing. In: Proceeding of the special interest group in GRAPHics (SIGGRAPH), Los Angeles, California, USA, vol 27, pp 1–7

    Google Scholar 

  48. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the 4th Alvey vision conference, Manchester, pp 147–151

    Google Scholar 

  49. Healey G, Slater D (1995) Global color contancy:recognition of objects by use of illumination invariant properties of color distributions. J Opt Soc Am 11(11):3003–3010

    Article  Google Scholar 

  50. Hegazy D, Denzler J (2008) Boosting colored local features for generic object recognition. Pattern Recogn Image Anal 18(2):323–327

    Article  Google Scholar 

  51. Heidemann G (2004) Focus-of-attention from local color symmetries. PAMI 26(7):817–830

    Article  Google Scholar 

  52. Heitger F, Rosenthaler L, von der Heydt R, Peterhans E, Kubler O (1992) Simulation of neural contour mechanisms: from simple to end-stopped cells. Vis Res 32(5):963–981

    Article  Google Scholar 

  53. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. IEEE computer society conference on computer vision and pattern recognition 0:1–8

    Google Scholar 

  54. Hu L, Jiang S, Huang Q, Gao W (2008) People re-detection using adaboost with sift and color correlogram. In: Proceedings of the IEEE international conference on image processing, San Diego, California, USA, pp 1348–1351

    Google Scholar 

  55. Huang J, Kumar SR, Mitra M, Zhu W, Zabih R (1997) Image indexing using color correlogram. IEEE conference on computer vision and pattern recognition pp 762–768

    Google Scholar 

  56. Inria database. URL http://lear.inrialpes.fr/data

  57. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  58. (ITU) IRCC (1990) Basic parameter values for the hdtv standard for the studio and for international programme exchange. Tech. Rep. 709-2, CCIR Recommendation

    Google Scholar 

  59. Jost T, Ouerhani N, von Wartburg R, Muri R, Hugli H (2005) Assessing the contribution of color in visual attention. Comput Vis Image Understand 100:107–123

    Article  Google Scholar 

  60. Khan F, van de Weijer J, Vanrell M (2009) Top-down color attention for object recognition. In: Proceedings of the international conference on computer vision, Japan, pp 979–986

    Google Scholar 

  61. Klinker G, Shafer S, Kanade T (1991) A physical approach to color image understanding. Int J Comput Vis 4(1):7–38

    Article  Google Scholar 

  62. von Kries J (1970) Influence of adaptation on the effects produced by luminous stimuli. In: MacAdam, D.L. (ed) Sources of color vision. MIT Press, Cambridge

    Google Scholar 

  63. Kubelka P (1948) New contribution to the optics of intensity light-scattering materials, part i. J Opt Soc Am A 38(5):448–457

    Article  MathSciNet  Google Scholar 

  64. Lambert JH (1760) Photometria sive de mensure de gratibus luminis, colorum umbrae. Eberhard Klett

    Google Scholar 

  65. Land E (1977) The retinex theory of color vision. Sci Am 237:108–129

    Article  Google Scholar 

  66. Land E (1986) An alternative technique for the computation of the designator in the retinex theory of color vision. In: Proceedings of the national academy science of the United State of America, vol 83, pp 3078–3080

    Article  Google Scholar 

  67. Lenz R, Tran L, Meer P (1999) Moment based normalization of color images. In: IEEE workshop on multimedia signal processing, Copenhagen, Denmark, pp 129–132

    Google Scholar 

  68. Li J, Allinson NM (2008) A comprehensive review of current local features for computer vision. Neurocomput 71(10-12):1771–1787. DOI http://dx.doi.org/10.1016/j.neucom. 2007.11.032

    Google Scholar 

  69. Lindeberg T (1994) Scale-space theory in computer vision. Springer, London, UK

    Google Scholar 

  70. Locher P, Nodine C (1987) Symmetry catches the eye. Eye Movements: from physiology to cognition, North-Holland Press, Amsterdam

    Google Scholar 

  71. Logvinenko AD (2009) An object-color space. J Vis 9:1–23

    Article  Google Scholar 

  72. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  73. Luke RH, Keller JM, Chamorro-Martinez J (2008) Extending the scale invariant feature transform descriptor into the color domain. Proc ICGST Int J Graph Vis Image Process, GVIP 08:35–43

    Google Scholar 

  74. Marques O, Mayron L, Borba G, Gamba H (2006) Using visual attention to extract regions of interest in the context of image retrieval. In: Proceedings of the 44th annual Southeast regional conference, ACM, ACM-SE 44, pp 638–643

    Google Scholar 

  75. Matas J, Chum O, Martin U, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: Proceeding of the British machine vision conference, pp 384–393

    Google Scholar 

  76. Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vision 60:63–86

    Google Scholar 

  77. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27:1615–1630

    Article  Google Scholar 

  78. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vis 65(1/2):43–72. URL http://lear.inrialpes.fr/pubs/2005/MTSZMSKG05

    Google Scholar 

  79. Mindru F, Moons T, van Gool L (1999) Recognizing color patterns irrespective of viewpoints and illuminations. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 368–373

    Google Scholar 

  80. Mindru F, Tuytelaars T, Gool LV, Moons T (2004) Moment invariants for recognition under changing viewpoint and illumination. Comput Vis Image Understand 1(3):3–27

    Article  Google Scholar 

  81. Ming A, Ma H (2007) A blob detector in color images. In: Proceedings of the 6th ACM international conference on image and video retrieval, ACM, New York, NY, USA, CIVR ’07, pp 364–370

    Google Scholar 

  82. Mollon J (2006) Monge: The verriest lecture, lyon, july 2005. Visual Neurosci 23:297–309

    Article  Google Scholar 

  83. Montesinos P, Gouet V, Deriche R (1998) Differential invariants for color images. In: Proceedings of the international conference on pattern recognition, Brisbane (Australie), vol 1, pp 838–840

    Google Scholar 

  84. Montesinos P, Gouet V, Deriche R, Pel D (2000) Matching color uncalibrated images using differential invariants. Image Vis Comput 18(9):659–671

    Article  Google Scholar 

  85. Moosmann F, Larlus D, Jurie F (2006) Learning Saliency Maps for Object Categorization. In: ECCV international workshop on the representation and use of prior knowledge in vision

    Google Scholar 

  86. Moravec H (1977) Towards automatic visual obstacle avoidance. In: Proceedings of the 5th international joint conference on artificial intelligence, p 584

    Google Scholar 

  87. Nilsback ME, Zisserman A (2008) Automated flower classification over a large number of classes. In: Proceedings of the indian conference on computer vision, graphics image processing, pp 722 –729

    Google Scholar 

  88. Poynton’s web page. URL http://www.poynton.com/notes/colour_and_gamma/GammaFAQ.html

  89. Qiu G (2002) Indexing chromatic and achromatic patterns for content-based colour image retrieval. Pattern Recogn 35(8):1675–1686

    Article  MATH  Google Scholar 

  90. Quelhas P, Odobez J (2006) Natural scene image modeling using color and texture visterms. In: Proceedings of conference on image and video retrieval, Phoenix, USA, pp 411–421

    Google Scholar 

  91. Recognition benchmark images. URL http://www.vis.uky.edu/stewe/ukbench/

  92. Reisfeld D, Wolfson H, Yeshurun Y (1995) Context-free attentional operators: the generalized symmetry transform. Int J Comput Vis 14:119–130

    Article  Google Scholar 

  93. Rosenberg C, Hebert M, Thrun S (2001) Color constancy using kl-divergence. In: IEEE international conference on computer vision, pp 239–246

    Google Scholar 

  94. Rutishauser U, Walther D, Koch C, Perona P (2004) Is bottom-up attention useful for object recognition? In: IEEE conference on computer vision and pattern recognition (CVPR), pp 37–44

    Google Scholar 

  95. van de Sande K, Gevers T, Snoek C (2010a) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32:1582–1596

    Article  Google Scholar 

  96. van de Sande KE, Gevers T, Snoek CG (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32:1582–1596

    Article  Google Scholar 

  97. Schugerl P, Sorschag R, Bailer W, Thallinger G (2007) Object re-detection using sift and mpeg-7 color descriptors. In: Proceedings of the international workshop on multimedia content analysis and mining, pp 305–314

    Google Scholar 

  98. Sebe N, Gevers T, Dijkstra S, van de Weije J (2006a) Evaluation of intensity and color corner detectors for affine invariant salient regions. In: Proceedings of the 2006 conference on computer vision and pattern recognition workshop, IEEE computer society, Washington, DC, USA, CVPRW ’06, pp 18–25

    Google Scholar 

  99. Sebe N, Gevers T, van de Weijer J, Dijkstra S (2006) Corners detectors for affine invariant salient regions: is color important? In: Proceedings of conference on image and video retrieval, Phoenix, USA, pp 61–71

    Google Scholar 

  100. Shafer SA (1985) Using color to separate reflection components. Color Res Appl 10(4):210–218

    Article  Google Scholar 

  101. Shi L, Funt B, Hamarneh G (2008) Quaternion color curvature. In: Proceeding IS&T sixteenth color imaging conference, Portland, pp 338–341

    Google Scholar 

  102. Sikora T (2001) The mpeg-7 visual standard for content description - an overview. IEEE Trans Circ Syst Video Technol 11:696–702

    Article  Google Scholar 

  103. Song X, Muselet D, Tremeau A (2009) Local color descriptor for object recognition across illumination changes. In: Proceedings of the conference on advanced concepts for intelligent vision systems (ACIVS’09), Bordeaux (France), pp 598–605

    Google Scholar 

  104. Stentiford FWM (2003) An attention based similarity measure with application to content-based information retrieval. In: Proceedings of the storage and retrieval for media databases conference, SPIE electronic imaging

    Google Scholar 

  105. Stoettinger J, Hanbury A, Sebe N, Gevers T (2007) Do colour interest points improve image retrieval? In: Proceedings of the IEEE international conference on image processing, San Antonio (USA), vol 1, pp 169–172

    Google Scholar 

  106. Stokes M, Anderson M, Chandrasekar S, Motta R (1996) A standard default color space for the internet-srgb, Available from http://www.w3.org/Graphics/Color/sRGB.html

  107. Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280

    Article  Google Scholar 

  108. Vazquez E, Gevers T, Lucassen M, van de Weijer J, Baldrich R (2010) Saliency of color image derivatives: a comparison between computational models and human perception. J Opt Soc Am A 27(3):613–621

    Article  Google Scholar 

  109. Vázquez-Martína R, Marfila R, nez PN, Bandera A, Sandoval F (2009) A novel approach for salient image regions detection and description. Pattern Recogn Lett 30:1464–1476

    Google Scholar 

  110. Vigo DAR, Khan FS, van de Weijer J, Gevers T (2010) The impact of color on bag-of-words based object recognition. In: International conference on pattern recognition, pp 1549–1553

    Google Scholar 

  111. Vogel J, Schiele B (2004) A semantic typicality measure for natural scene categorization. In: Rasmussen CE, Blthoff HH, Schlkopf B, Giese MA (eds) Pattern recognition, lecture notes in computer science, vol 3175, Springer Berlin/Heidelberg, pp 195–203

    Google Scholar 

  112. Walther D, Rutishauser U, Koch C, Perona P (2005) Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Comput Vis Image Understand 100:41–63

    Article  Google Scholar 

  113. Wandell B (1987) The synthesis and analysis of color images. IEEE Trans Pattern Anal Mach Intell 9:2–13

    Article  Google Scholar 

  114. van de Weijer J, Schmid C (2006) Coloring local feature extraction. In: Proceedings of the ninth European conference on computer vision, Graz, Austria, vol 3954, pp 334–348

    Google Scholar 

  115. van de Weijer J, Schmid C (2007) Applying color names to image description. In: Proceedings of the IEEE international conference on image processing, San Antonio (USA), vol 3, pp 493–496

    Google Scholar 

  116. van de Weijer J, Gevers T, Geusebroek JM (2005) Edge and corner detection by photometric quasi-invariants. IEEE Trans Pattern Anal Mach Intell 27(4):625–630

    Article  Google Scholar 

  117. van de Weijer J, Gevers T, Bagdanov A (2006) Boosting color saliency in image feature detection. IEEE Trans Pattern Anal Mach Intell 28(1):150–156

    Article  Google Scholar 

  118. van de Weijer J, Gevers T, Smeulders A (2006b) Robust photometric invariant features from the colour tensor. IEEE Trans Image Process 15(1):118–127

    Article  Google Scholar 

  119. Wu P, Kong L, Li X, Fu K (2008a) A hybrid algorithm combined color feature and keypoints for object detection. In: Proceedings of the 3rd IEEE conference on industrial electronics and applications, Singapore, pp 1408–1412

    Google Scholar 

  120. Wu P, Kong L, Zhao F, Li X (2008) Particle filter tracking based on color and sift features. In: Proceedings of the international conference on audio, language and image processing, Shanghai

    Google Scholar 

  121. Wurtz R, Lourens T (2000) Corner detection in color images through a multiscale combination of end-stopped cortical cells. Image Vis Comput 18(6-7):531–541

    Article  Google Scholar 

  122. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulas, 2nd ed. Wiley, New York

    Google Scholar 

  123. Xiong W, Funt B (2006) Color constancy for multiple-illuminant scenes using retinex and svr. In: Proceeding of imaging science and technology fourteenth color imaging conference, pp 304–308

    Google Scholar 

  124. Zhang D, Wang W, Gao W, Jiang S (2007) An effective local invariant descriptor combining luminance and color information. In: Proceedings of IEEE international conference on multimedia and expo, Beijing (China), pp 1507–1510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Muselet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muselet, D., Funt, B. (2013). Color Invariants for Object Recognition. In: Fernandez-Maloigne, C. (eds) Advanced Color Image Processing and Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6190-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6190-7_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6189-1

  • Online ISBN: 978-1-4419-6190-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics