Skip to main content

Prenatal Cytogenetics

  • Chapter
  • First Online:
The Principles of Clinical Cytogenetics

Abstract

Amniocentesis, the transabdominal or transcervical puncture of the uterus for the purpose of removing amniotic fluid, has been practiced since the 1930s (Menees et al., Am J Roentgen 24:363–366, 1930). It was used in the early 1950s in the prenatal evaluation of Rh sensitization (Bevis and Manc, Lancet 21(4):395–398, 1952).

A key event that laid the foundation for prenatal cytogenetic analysis was the discovery of the ability to determine gender on the basis of the incidence of the sex chromatin body observed in the nuclei of oral mucosa smears (Marberger et al., Proc Soc Exp Biol Med 89:488, 1955; Barr, Anat Rec 121:387, 1955). In 1956, James (James, Lancet:202–203, 1956) described the use of amniotic fluid sediment to determine fetal sex by Papanicolaou and Giemsa stains, and Fuchs and Riis (Fuchs and Riis, Nature 177:330, 1956) showed in amniotic fluid of term pregnancies that they could accurately determine the fetal sex in 20 of 21 cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menees TO, Miller JD, Holly LE. Amniography: preliminary report. Am J Roentgen. 1930;24:363–6.

    Google Scholar 

  2. Bevis DCA, Manc MB. The antenatal prediction of hemolytic ­disease of the newborn. Lancet. 1952;21(4):395–8.

    Article  Google Scholar 

  3. Marberger E, Boccaabella RA, Nelson WO. Oral smear as a method of chromosomal sex detection. Proc Soc Exp Biol Med. 1955; 89:488.

    PubMed  CAS  Google Scholar 

  4. Barr ML. The skin biopsy test of chromosomal sex in clinical ­practice. Anat Rec. 1955;121:387.

    Google Scholar 

  5. James F. Letter to the Editor. Lancet. 1956;202–3.

    Google Scholar 

  6. Fuchs F, Riis P. Antenatal sex determination. Nature. 1956;177:330.

    Article  PubMed  CAS  Google Scholar 

  7. Makowski EL, Prem KA, Karer JH. Letter to the editor: Detection of sex of fetuses by the incidence of sex chromatin body in nuclei of cells in amniotic fluid. Science. 1956;124:542–3.

    Article  Google Scholar 

  8. Shettles LB. Nuclear morphology of cells in human amniotic fluid in relation to sex of infant. Am J Obstet Gynecol. 1956;71(4): 834–8.

    PubMed  CAS  Google Scholar 

  9. Steele MW, Breg WR. Chromosome analysis of human amniotic-fluid cells. Lancet. 1966;1:383–5.

    Article  PubMed  CAS  Google Scholar 

  10. Jacobson CB, Barter RG. Intrauterine diagnosis and management of genetic defects. Am J Obstet Gynecol. 1967;99(6):796–806.

    PubMed  CAS  Google Scholar 

  11. Nadler HL, Gerbie AB. Role of amniocentesis in the intrauterine detection of genetic disorders. N Engl J Med. 1968;282(11):596–9.

    Article  Google Scholar 

  12. Milunsky A. The prenatal diagnosis of chromosomal disorders. In: Milunsky A, editor. Genetic disorders and the fetus. New York: Plenum Press; 1979. p. 93.

    Chapter  Google Scholar 

  13. National Center for Health Statistics, Documentation for Public Use File, Natality 2006. Hyattsville: National Center for Health Statistics. Annual product 2008. Available for downloading at: http://www.cdc.gov/nchs/about/major/cdc/Vitalstatsonline.htm#Downloadable.

  14. Acosta-Sison H. Diagnosis of hydatidiform mole. Obstet Gynecol. 1958;12:205.

    Google Scholar 

  15. Alvarez H. Diagnosis of hydatidiform mole by transabdominal placental biopsy. Am J Obstet Gynecol. 1966;95:538.

    PubMed  CAS  Google Scholar 

  16. Mohr J. Foetal genetic diagnosis: development of techniques for early sampling of foetal cells. Acta Pathol Microbiol Scand. 1968; 73:73–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kullander S, Sandahl B. Fetal chromosome analysis after transcervical placental biopsies during early pregnancy. Acta Obstet Gynecol Scand. 1973;52:355–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hahnemann N. Early prenatal diagnosis; a study of biopsy techniques and cell culturing from extraembryonic membranes. Clin Genet. 1974;6:294–306.

    Article  PubMed  CAS  Google Scholar 

  19. Department of Obstet and Gynecol. Fetal sex prediction by sex chromatin of chorionic villi cells during early pregnancy. Chin Med J. 1975;1(2):117–26.

    Google Scholar 

  20. Horwell DH, Loeffler FE, Coleman DV. Assessment of a transcervical aspiration technique for chorionic villus biopsy in the first trimester of pregnancy. Br J Obstet Gynaecol. 1983;90:196–8.

    Article  PubMed  CAS  Google Scholar 

  21. Liu DTY, Mitchell J, Johnson J, Wass DM. Trophoblast sampling by blind transcervical aspiration. Br J Obstet Gynaecol. 1983;90: 1119–23.

    Article  PubMed  CAS  Google Scholar 

  22. Niazi M, Coleman DV, Loeffler FE. Trophoblast sampling in early pregnancy. Culture of rapidly dividing cells from immature placental villi. Br J Obstet Gynaecol. 1981;88:1081–5.

    Article  PubMed  CAS  Google Scholar 

  23. Kazy Z, Rozovsky IS, Bakharev VA. Chorion biopsy in early pregnancy: a method of early prenatal diagnosis for inherited disorders. Prenat Diagn. 1982;2:39–45.

    Article  Google Scholar 

  24. Kuliev A, Jackson L, Froster U, Brambati B, Simpson JL, Verlinsky Y, Ginsberg N, Smidt-Jensen S, Zakut H. Chorionic villus sampling safety. Report of World Health Organization/EURO meeting in association with the seventh international conference on early prenatal diagnosis of genetic disorders. Am J Obstet Gynecol. 1996;174(3):807–11.

    Article  PubMed  CAS  Google Scholar 

  25. Valenti C. Antenatal detection of hemoglobinopathies. Am J Obstet Gynecol. 1973;115(6):851–3.

    PubMed  CAS  Google Scholar 

  26. Hobbins JC, Mahoney MJ. In utero diagnosis of hemoglobinopathies. N Engl J Med. 1974;290(19):1065–7.

    Article  PubMed  CAS  Google Scholar 

  27. Daffos F, Capella-Pavlovsky M, Forestier F. A new procedure for fetal blood sampling in utero: preliminary results of fifty-three cases. Am J Obstet Gynecol. 1983;146(8):985–7.

    PubMed  CAS  Google Scholar 

  28. Daffos F, Capella-Pavloksky M, Forestier F. Fetal blood sampling during pregnancy with use of a needle guided by ultrasound: a study of 606 consecutive cases. Am J Obstet Gynecol. 1985;153(6): 655–60.

    PubMed  CAS  Google Scholar 

  29. Hsu L. Prenatal diagnosis of chromosomal abnormalities through amniocentesis. In: Milunsky A, editor. Genetic disorders and the fetus. 3rd ed. Baltimore: John Hopkins University Press; 1992.

    Google Scholar 

  30. Buckton KE, O’Riordan ML, Ratcliffe S, Slight J, Mitchell M, McBeath S. A G-band study of chromosomes in liveborn infants. Ann Hum Genet. 1980;43:227–39.

    Article  PubMed  CAS  Google Scholar 

  31. Hook EB. Rates of Down’s syndrome in live births and at midtrimester amniocentesis. Lancet. 1978;1:1053–4.

    Article  PubMed  CAS  Google Scholar 

  32. Schreinemachers DM, Cross PK, Hook EB. Rates of trisomies 21, 18, 13 and other chromosome abnormalities in about 20,000 prenatal studies compared with estimated rates in live births. Hum Genet. 1981;61:318–24.

    Google Scholar 

  33. Hook EB. Chromosome abnormalities and spontaneous fetal death following amniocentesis: further data and associations with maternal age. Am J Hum Genet. 1983;35:110–16.

    PubMed  CAS  Google Scholar 

  34. Halliday JL, Watson LF, Lumley J, Danks DM, Sheffield LJ. New estimates of down syndrome risks at chorionic villus sampling, amniocentesis, and livebirth in women of advanced maternal age from a uniquely defined population. Prenat Diagn. 1995; 15:455–65.

    Article  PubMed  CAS  Google Scholar 

  35. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of break points. Am J Hum Genet. 1991;45:995–1013.

    Google Scholar 

  36. Giardino D, Corti C, Ballarati L, Colombo D, et al. De novo balanced chromosome rearrangements in prenatal diagnosis. Prenat Diagn. 2009;29:257–65.

    Article  PubMed  Google Scholar 

  37. Warburton D, Byrne J, Canki N. Chromosome anomalies and prenatal development: an atlas. New York: Oxford University Press; 1991.

    Google Scholar 

  38. Simpson JL. Incidence and timing of pregnancy losses: relevance to evaluating safety of early prenatal diagnosis. Am J Med Genet. 1990;35:165–73.

    Article  PubMed  CAS  Google Scholar 

  39. Hagman A, Wennerholm UB, Källén K, et al. Women who gave birth to girls with Turner syndrome: maternal and neonatal characteristics. Hum Reprod. 2010;25(6):1553–60. Epub 2010 Mar 17.

    Article  PubMed  CAS  Google Scholar 

  40. Warburton D, Kline J, Stein Z, Susser M. Monosomy X: a chromosomal anomaly associated with young maternal age. Lancet. 1980;1:167–9.

    Article  PubMed  CAS  Google Scholar 

  41. The NICHD National Registry for Amniocentesis Study Group. Midtrimester amniocentesis for prenatal diagnosis: safety and accuracy. JAMA. 1976;236(13):1471–6.

    Article  Google Scholar 

  42. Rapp R. Amniocentesis in sociocultural perspective. J Genet Couns. 1993;2(3):183–96.

    Article  PubMed  Google Scholar 

  43. Tkachuk DC, Pinkel D, Kuo W-L, Weier H-U, Gray JW. Clinical applications of fluorescence in situ hybridization. Genet Anal Tech Appl. 1991;8(2):67–74.

    Article  PubMed  CAS  Google Scholar 

  44. Klinger K, Landes G, Shook D, Harvey R, Lopez L, Locke P, Lerner T, Osathanondh R, Leverone B, Houseal T, Pavelka K, Dackowski W. Rapid detection of chromosome aneuploidies in uncultured amniocytes by using fluorescence in situ hybridization (FISH). Am J Hum Genet. 1992;51:55–65.

    PubMed  CAS  Google Scholar 

  45. Lebo RV, Flandermeyer RR, Diukman R, Lynch ED, Lepercq JA, Golbus MS. Prenatal diagnosis with repetitive in situ hybridization probes. Am J Med Genet. 1992;43:848–54.

    Article  PubMed  CAS  Google Scholar 

  46. Callen DF, Freemantle CJ, Ringenbergs ML, Baker E, Eyre HJ, Romain D, Haan EA. The isochromosome 18p syndrome: confirmation of cytogenetic diagnosis in nine cases by in situ hybridization. Am J Hum Genet. 1990;47:493–8.

    PubMed  CAS  Google Scholar 

  47. Callen DF, Eyre H, Yip M-Y, Freemantle J, Haan EA. Molecular cytogenetic and clinical studies of 42 patients with marker chromosomes. Am J Med Genet. 1992;43:709–15.

    Article  PubMed  CAS  Google Scholar 

  48. Blennow E, Bui T-H, Kristoffersson U, Vujic M, Anneren G, Holmberg E, Nordenskjöld M. Swedish survey on extra structurally abnormal chromosomes in 39,105 consecutive prenatal diagnoses: prevalence and characterization by fluorescence in situ hybridization. Prenat Diagn. 1994;14:1019–28.

    Article  PubMed  CAS  Google Scholar 

  49. Brondum-Nielsen K, Mikkelsen M. A 10-year survey, 1980–1990, of prenatally diagnosed small supernumerary marker chromosomes, identified by FISH analysis. Outcome and follow-up of 14 cases diagnosed in a series of 12,699 prenatal samples. Prenat Diagn. 1995;15:615–19.

    Article  PubMed  CAS  Google Scholar 

  50. Bettio D, Rizzi N, Giardino D, Gurrieri F, Silvestri G, Grugni G, Larizza L. FISH characterization of small supernumerary marker chromosomes in two Prader-Willi patients. Am J Med Genet. 1997;68:99–104.

    Article  PubMed  CAS  Google Scholar 

  51. Gosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983;39(4):348–54.

    PubMed  CAS  Google Scholar 

  52. Eiben B, Goebel R, Hansen S, Hammans W. Early amniocentesis – a cytogenetic evaluation of over 1500 cases. Prenat Diagn. 1994;14:497–501.

    Article  PubMed  CAS  Google Scholar 

  53. Leschot NJ, Verjaal M, Treffers PE. Risks of midtrimester amniocentesis; assessment in 3000 pregnancies. Br J Obstet Gynaecol. 1985;92:804–7.

    Article  PubMed  CAS  Google Scholar 

  54. Tabor A, Madsen M, Obel EB, Philip J, Bang J, Norgaard-Pedersen B. Randomised controlled trial of genetic amniocentesis in 4606 low-risk women. Lancet. 1986;1:1287–92.

    Article  PubMed  CAS  Google Scholar 

  55. Tabor A, Vestergaard CH, Lidegaard Ø. Fetal loss rate after ­chorionic villus sampling and amniocentesis: an 11-year national registry study. Ultrasound Obstet Gynecol. 2009;34(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  56. Evans MI, Wapner RJ. Invasive prenatal diagnostic procedures 2005. Semin Perinatol. 2005;29(4):215–18. Review.

    Article  PubMed  Google Scholar 

  57. Tabor A, Alfirevic Z. Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther. 2010;27(1):1–7. Epub 2009 Dec 24. Review.

    Article  PubMed  Google Scholar 

  58. Odibo AO, Gray DL, Dicke JM, Stamilio DM, Macones GA, Crane JP. Revisiting the fetal loss rate after second-trimester genetic amniocentesis: a single center’s 16-year experience. Obstet Gynecol. 2008;111(3):589–95.

    Article  PubMed  Google Scholar 

  59. Simpson JL, Mills JL, Holmes LB, Ober CL, Aarons J, Jovanovic L, Knopp RH. Low fetal loss rates after ultrasound-proved viability in early pregnancy. JAMA. 1987;258:2555–7.

    Article  PubMed  CAS  Google Scholar 

  60. Pauker SP, Pauker SG. The amniocentesis decision: an explicit guide for parents. Birth Defects Orig Artic Ser. 1979;XV(5C): 289–324.

    Google Scholar 

  61. Evans MI, Drugan A, Koppitch FC, Zador IE, Sacks AJ, Sokol R. Genetic diagnosis in the first trimester: the norm for the 1990s. Am J Obstet Gynecol. 1989;160:1332–9.

    PubMed  CAS  Google Scholar 

  62. Evans MI, Johnson MP, Holzgreve W. Early amniocentesis – what exactly does it mean? J Reprod Med. 1994;39:77–8.

    PubMed  CAS  Google Scholar 

  63. Burrows PE, Lyons EA, Phillips HJ, Oates I. Intrauterine membranes: sonographic findings and clinical significance. J Clin Ultrasound. 1982;10:1–8.

    Article  PubMed  CAS  Google Scholar 

  64. Hanson FW, Zorn EM, Tennant FR, Marianos S, Samuels S. Amniocentesis before 15 weeks’ gestation: outcome, risks, and technical problems. Am J Obstet Gynecol. 1987;156:1524–31.

    PubMed  CAS  Google Scholar 

  65. Johnson A, Godmilow L. Genetic amniocentesis at 14 weeks or less. Clin Obstet Gynecol. 1988;31(2):345–52.

    Article  PubMed  CAS  Google Scholar 

  66. Wald NJ, Terzian E, Vickers PA. Congenital talipes and hip malformation in relation to amniocentesis: a case-control study. Lancet. 1983;2:246–9.

    Article  PubMed  CAS  Google Scholar 

  67. Stripparo L, Buscaglia M, Longatti L, Ghisoni L, Dambrosio F, Guerner S, Rosella F, Lituania M, Cordone M, De Biasio P, Passamonti U, Gimelli G, Cuoco C. Genetic amniocentesis: 505 cases performed before the sixteenth week of gestation. Prenat Diagn. 1990;10:359–65.

    Article  PubMed  CAS  Google Scholar 

  68. Elejalde BR, de Elejalde MM, Acuna JM, Thelen D, Trujillo C, Marrmann M. Prospective study of amniocentesis performed between weeks 9 and 16 of gestation: its feasibility, risks, complications and use in early genetic prenatal diagnosis. Am J Med Genet. 1990;35:188–96.

    Article  PubMed  CAS  Google Scholar 

  69. Penso CA, Sandstrom MM, Garber M-F, Ladoulis M, Stryker JM, Benacerraf BB. Early amniocentesis: report of 407 cases with neonatal follow-up. Obstet Gynecol. 1990;76:1032–6.

    PubMed  CAS  Google Scholar 

  70. Hanson FW, Happ RL, Tennant FR, Hune S, Peterson AG. Ultrasonography-guided early amniocentesis in singleton pregnancies. Am J Obstet Gynecol. 1990;162:1376–83.

    PubMed  CAS  Google Scholar 

  71. Hackett GA, Smith JH, Rebello MT, Gray CTH, Rooney DE, Beard RW, Loeffler FE, Coleman DV. Early amniocentesis at 11–14 weeks’ gestation for the diagnosis of fetal chromosomal abnormality – a clinical evaluation. Prenat Diagn. 1991;11:311–15.

    Article  PubMed  CAS  Google Scholar 

  72. Crandall BF, Kulch P, Tabsh K. Risk assessment of amniocentesis between 11 and 15 weeks: comparison to later amniocentesis controls. Prenat Diagn. 1994;14:913–19.

    Article  PubMed  CAS  Google Scholar 

  73. Kerber S, Held KR. Early genetic amniocentesis – 4 years’ experience. Prenat Diagn. 1993;13:21–7.

    Article  PubMed  CAS  Google Scholar 

  74. Lockwood DH, Neu RL. Cytogenetic analysis of 1375 amniotic fluid specimens from pregnancies with gestational age less than 14 weeks. Prenat Diagn. 1993;13:801–5.

    Article  PubMed  CAS  Google Scholar 

  75. Diaz Vega M, de la Cueva P, Leal C, Aisa F. Early amniocentesis at 10–12 weeks’ gestation. Prenat Diagn. 1996;16:307–12.

    Article  PubMed  CAS  Google Scholar 

  76. Brumfield CG, Lin S, Conner W, Cosper P, Davis RO, Owen J. Pregnancy outcome following genetic amniocentesis at 11–14 versus 16–19 weeks’ gestation. Obstet Gynecol. 1996;88:114–18.

    Article  PubMed  CAS  Google Scholar 

  77. Bravo RR, Shulman LP, Phillips OP, Grevengood C, Martens PR. Transplacental needle passage in early amniocentesis and pregnancy loss. Obstet Gynecol. 1995;86:437–40.

    Article  PubMed  CAS  Google Scholar 

  78. Wilson RD. Early amniocentesis: a clinical review. Prenat Diagn. 1995;15:1259–73.

    Article  PubMed  CAS  Google Scholar 

  79. Shulman LP, Elias S, Phillips OP, Grevengood C, Dungan JS, Simpson JL. Amniocentesis performed at 14 weeks’ gestation or earlier: comparison with first-trimester transabdominal chorionic villus sampling. Obstet Gynecol. 1994;83:543–8.

    Article  PubMed  CAS  Google Scholar 

  80. Nicolaides K, de Lourdes Brizot M, Patel F, Snijders R. Comparison of chorionic villus sampling and amniocentesis for fetal karyotyping at 10–13 weeks’ gestation. Lancet. 1994;344:435–9.

    Article  PubMed  CAS  Google Scholar 

  81. Saura R, Roux D, Taine L, Maugey B, Laulon D, Laplace JP, Horovitz J. Early amniocentesis versus chorionic villus sampling for fetal karyotyping. Lancet. 1994;344:825–6.

    Article  PubMed  CAS  Google Scholar 

  82. Bombard AT, Carter SM, Nitowsky HM. Early amniocentesis versus chorionic villus sampling for fetal karyotyping. Lancet. 1994; 344:826.

    Article  PubMed  CAS  Google Scholar 

  83. Vandenbussche FPHA, Kanhai HHH, Keirse MJNC. Safety of early amniocentesis. Letter Lancet. 1994;344:1032.

    Article  CAS  Google Scholar 

  84. Eiben B, Osthelder B, Hamman W, Goebel R. Safety of early amniocentesis versus CVS. Letter. Lancet. 1994;344:1303–4.

    Article  PubMed  CAS  Google Scholar 

  85. Crandall BF, Hanson FW, Tennant F, Perdue ST. α-fetoprotein levels in amniotic fluid between 11 and 15 weeks. Am J Obstet Gynecol. 1989;160:1204–6.

    PubMed  CAS  Google Scholar 

  86. Philip J, Silver RK, Wilson RD, et al. NICHD EATA Trial Group. Late first-trimester invasive prenatal diagnosis: results of an international randomized trial. Obstet Gynecol. 2004;103(6): 1164–73.

    Google Scholar 

  87. Nevin J, Nevin NC, Dornan JC, Sim D, Armstrong MJ. Early amniocentesis: experience of 222 consecutive patients, 1987–1988. Prenat Diagn. 1990;10:79–83.

    Article  PubMed  CAS  Google Scholar 

  88. Boyd PA, Keeling JW, Selinger M, MacKenzie IZ. Limb reduction and chorion villus sampling. Prenat Diagn. 1990;10:437–41.

    Article  PubMed  CAS  Google Scholar 

  89. Firth HV, Boyd PA, Chamberlain P, MacKenzie IZ, Lindenbaum RH, Huson SM. Severe limb abnormalities after chorion villus sampling at 56–66 days’ gestation. Lancet. 1991;337:762–3.

    Article  PubMed  CAS  Google Scholar 

  90. Mastroiacovo P, Cavalcanti DP. Letter to the editor: Limb-reduction defects and chorion villus sampling. Lancet. 1991;337:1091.

    Article  Google Scholar 

  91. Hsieh F-J, Chen D, Tseng L-H, Lee C-N, Ko T-M, Chuang S-M, Chen H-Y. Letter to the editor: Limb-reduction defects and chorion villus sampling. Lancet. 1991;337:1091–2.

    Article  Google Scholar 

  92. Monni G, Ibba RM, Lai R, Giovanni O, Cao A. Letter to the ­editor: Limb-reduction defects and chorion villus sampling. Lancet. 1991;337:1091.

    Article  Google Scholar 

  93. Mahoney MJ. Letter to the editor: Limb abnormalities and ­chorionic villus sampling. Lancet. 1991;337:1422–3.

    Article  Google Scholar 

  94. Jackson LG, Wapner RJ, Brambati B. Letter to the editor: Limb abnormalities and chorionic villus sampling. Lancet. 1991; 337:1423.

    Google Scholar 

  95. Jahoda MGJ, Brandenburg H, Cohen-Overbeek T, Los FJ, Sachs ES, Waldimiroff JW. Terminal transverse limb defects and early chorionic villus sampling: evaluation of 4,300 cases with completed follow-up. Am J Med Genet. 1993;46:483–5.

    Article  PubMed  CAS  Google Scholar 

  96. Holmes LB. Report of National Institute of Child Health and Human Development workshop on chorionic villus sampling and limb and other defects, October 20, 1992. Teratology. 1993;48:7–13.

    Article  PubMed  CAS  Google Scholar 

  97. Mastroiacovo P, Tozzi AE, Agosti S, et al. Transverse limb reduction defects after chorion villus sampling: a retrospective cohort study. Prenat Diagn. 1993;13:1051–6.

    Article  PubMed  CAS  Google Scholar 

  98. Hsieh F-J, Shyu M-K, Sheu B-C, Lin S-P, Chen C-P, Huang F-Y. Limb defects after chorionic villus sampling. Obstet Gynecol. 1995;85(1):84–8.

    Article  PubMed  CAS  Google Scholar 

  99. Olney RS, Khoury MJ, Alo CJ, Costa P, Edmonds LD, Flood TJ, Harris JA, Howe HL, Moore CA, Olsen CL, Panny SR, Shaw GM. Increased risk for transverse digital deficiency after chorionic villus sampling: results of the united states multistate case-control study, 1988–1992. Teratology. 1995;51:20–9.

    Article  PubMed  CAS  Google Scholar 

  100. Froster UG, Jackson L. Limb defects and chorionic villus sampling: results from an international registry, 1992–94. Lancet. 1996;347:489–94.

    Article  PubMed  CAS  Google Scholar 

  101. Pérez MM, Míguez L, Fuster C, Miró R, Genescà G, Egozcue J. Heterochromatin decondensation in chromosomes from chorionic villus samples. Prenat Diagn. 1991;11(9):697–704.

    Article  PubMed  Google Scholar 

  102. Halliday J, Lumley J, Sheffield LJ, Lancaster PAL. Limb deficiencies, chorion villus sampling, and advanced maternal age. Am J Med Genet. 1993;47:1096–8.

    Article  PubMed  CAS  Google Scholar 

  103. Department of Health and Human Services. International classification of diseases, 9th revision; 1993. p. 99.

    Google Scholar 

  104. Mastroiacovo P, Botto LD. Chorionic villus sampling and transverse limb deficiencies: maternal age is not a confounder. Am J Med Genet. 1994;53:182–6.

    Article  PubMed  CAS  Google Scholar 

  105. Cutillo DM, Hammond EA, Reeser SL, Kershner MA, Lukin B, Godmilow L, Donnenfeld AE. Chorionic villus sampling utilization following reports of a possible association with fetal limb defects. Prenat Diagn. 1994;14:327–32.

    Article  PubMed  CAS  Google Scholar 

  106. California Genetic Disease Branch. Unpublished data.

    Google Scholar 

  107. Nakata N, Wang Y, Bhatt S. Trends in prenatal screening and diagnostic testing among women referred for advanced maternal age. Prenat Diagn. 2010;30:198–206.

    PubMed  Google Scholar 

  108. Rhoads GG, Jackson LG, Schlesselman SE, De La Cruz FF, Desnick RJ, Golbus MS, Ledbetter DH, Lubs HA, Mahoney MJ, Pergament E, Simpson JL, Carpenter RJ, Elias S, Ginsberg NA, Goldberg JD, Hobbins JC, Lynch L, Shiono PH, Wapner RJ, Zachary JM. The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med. 1989;320(10):609–17.

    Article  PubMed  CAS  Google Scholar 

  109. Silver RK, MacGregor SN, Sholl JS, Hobart ED, Waldee JK. An evaluation of the chorionic villus sampling learning curve. Am J Obstet Gynecol. 1990;163(3):917–22.

    PubMed  CAS  Google Scholar 

  110. Meade TW, Ämmälä P, Aynsley-Green A, et al. Medical Research Council European trial of chorion villus sampling. Lancet. 1991;337:1491–9.

    Article  Google Scholar 

  111. Chorionic villus sampling and amniocentesis: recommendations for prenatal counseling. Centers for Disease Control and Prevention. Morb Mortal Wkly Rep. 1995;44(RR-9):1–12.

    Google Scholar 

  112. Brambati B, Lanzani A, Tului L. Transabdominal and transcervical chorionic villus sampling: efficiency and risk evaluation of 2,411 cases. Am J Med Genet. 1990;35:160–4.

    Article  PubMed  CAS  Google Scholar 

  113. Brambati B, Trzian E, Tognoni G. Randomized clinical trial of transabdominal versus transcervical chorionic villus sampling methods. Prenat Diagn. 1991;11:285–93.

    Article  PubMed  CAS  Google Scholar 

  114. Smidt-Jensen S, Hahnemann N. Transabdominal chorionic villus sampling for fetal genetic diagnosis. Technical and obstetrical evaluation of 100 cases. Prenat Diagn. 1988;8:7–17.

    Article  PubMed  CAS  Google Scholar 

  115. Kalousek DK, Dill FJ. Chromosomal mosaicism confined to the placenta in human conceptions. Science. 1983;221:665–7.

    Article  PubMed  CAS  Google Scholar 

  116. Verjaal M, Leschot NJ, Wolf H, Treffers PE. Karyotypic differences between cells from placenta and other fetal tissues. Prenat Diagn. 1987;7:343–8.

    Article  PubMed  CAS  Google Scholar 

  117. Hogge WA, Schonberg SA, Golbus MS. Chorionic villus sampling: experience of the first 1000 cases. Am J Obstet Gynecol. 1986;154(6):1249–52.

    PubMed  CAS  Google Scholar 

  118. Harrison K, Barrett IJ, Lomax BL, Kuchinka BD, Kalousek DK. Detection of confined placental mosaicism in trisomy 18 conceptions using interphase cytogenetic analysis. Hum Genet. 1993;92:353–8.

    Article  PubMed  CAS  Google Scholar 

  119. Goldberg JD, Wohlferd MM. Incidence and outcome of chromosomal mosaicism found at the time of chorionic villus sampling. Am J Obstet Gynecol. 1997;176:1349–53.

    Article  PubMed  CAS  Google Scholar 

  120. Kalousek DK, Dill FJ, Pantzar T, McGillivray BC, Yong SL, Wilson RD. Confined chorionic mosaicism in prenatal diagnosis. Hum Genet. 1987;77:163–7.

    Article  PubMed  CAS  Google Scholar 

  121. Ledbetter DH, Zachary JM, Simpson JL, Golbus MS, Pergament E, Jackson L, Mahoney MJ, Desnick RJ, Shulman J, Copeland KL, Verlinsky Y, Yang-Feng T, Schonberg SA, Babu A, Tharapel A, Dorfmann A, Lubs HA, Rhoads GG, Fowler SE, De La Cruz F. Cytogenetic results from the U.S. collaborative study on CVS. Prenat Diagn. 1992;12:317–55.

    Article  PubMed  CAS  Google Scholar 

  122. Wang BT, Rubin CH, Williams J. Mosaicism in chorionic villus sampling: an analysis of incidence and chromosomes involved in 2612 consecutive cases. Prenat Diagn. 1993;13:179–90.

    Article  PubMed  CAS  Google Scholar 

  123. Wang BT, Peng W, Cheng KT, Chiu S-F, Ho W, Khan Y, Wittman M, Williams J. Chorionic villi sampling: laboratory experience with 4,000 consecutive cases. Am J Med Genet. 1994;53:307–16.

    Article  PubMed  CAS  Google Scholar 

  124. Smith K, Gregson NM, Howell RT, Pearson J, Wolstenholme J. Cytogenetic analysis of chorionic villi for prenatal diagnosis: an ACC collaborative study of U.K. data. Prenat Diagn. 1994;14:363–79.

    Article  Google Scholar 

  125. Wolstenholme J, Rooney DE, Davison EV. Confined placental mosaicism, IUGR, and adverse pregnancy outcome: a controlled retrospective U.K. collaborative survey. Prenat Diagn. 1994;14:345–61.

    Article  PubMed  CAS  Google Scholar 

  126. Kalousek DK, Howard-Peebles PN, Olson SB, Barrett IJ, Dorfmann A, Black SH, Schulman JD, Wilson RD. Confirmation of CVS mosaicism in term placentae and high frequency of intrauterine growth retardation association with confined placental mosaicism. Prenat Diagn. 1991;11:743–50.

    Article  PubMed  CAS  Google Scholar 

  127. Hahnemann JM, Vejerslev LO. European collaborative research on mosaicism in CVS (EUCROMIC) – fetal and extrafetal cell lineages in 192 gestations with CVS mosaicism involving single autosomal trisomy. Am J Med Genet. 1997;70:179–87.

    Article  PubMed  CAS  Google Scholar 

  128. Daniel A, Wu Z, Darmanian A, et al. Issues arising from the prenatal diagnosis of some rare trisomy mosaics – the importance of cryptic fetal mosaicism. Prenat Diagn. 2004;24(7):524–36. Review.

    Article  PubMed  Google Scholar 

  129. Schuring-Blom GH, Keijzer M, Jakobs ME, Van Den Brande DM, Visser HM, Wiegant J, Hoovers JMN, Leschot NJ. Molecular cytogenetic analysis of term placentae suspected of mosaicism using fluorescence in situ hybridization. Prenat Diagn. 1993;13:671–9.

    Article  PubMed  CAS  Google Scholar 

  130. Henderson KG, Shaw TE, Barrett IJ, Telenius AHP, Wilson RD, Kalousek DK. Distribution of mosaicism in human placentae. Hum Genet. 1996;97:650–4.

    Article  PubMed  CAS  Google Scholar 

  131. Los FJ, van Den Berg C, Wildschut HI, Brandenburg H, den Hollander NS, Schoonderwalt EM, Pijpers L, Jan H, Galjaard R, Van Opstal D. The diagnostic performance of cytogenetic investigation in amniotic fluid cells and chorionic villi. Prenat Diagn. 2001;21:1150–8.

    Article  PubMed  CAS  Google Scholar 

  132. Sago H, Chen E, Conte WJ, Cox VA, Goldberg JD, Lee RV, Golabi M. True trisomy 2 mosaicism in amniocytes and newborn liver associated with multiple system abnormalities. Am J Med Genet. 1997;72:343–6.

    Article  PubMed  CAS  Google Scholar 

  133. Kivirikko S, Salonen R, Salo A, von Koskull H. Prenatally detected trisomy 7 mosaicism in a dysmorphic child. Prenat Diagn. 2002;13:1239–40.

    Google Scholar 

  134. Klein J, Graham JM, Platt LD, Schreck R. Trisomy 8 mosaicism in chorionic villus sampling: case report and counselling issues. Prenat Diagn. 1994;14:451–4.

    Article  PubMed  CAS  Google Scholar 

  135. Weiner CP, Okamura K. Diagnostic fetal blood sampling-technique related losses. Fetal Diagn Ther. 1996;11:169–75.

    Article  PubMed  CAS  Google Scholar 

  136. Orlandi F, Damiani G, Jakil C, Lauricella S, Bertolino O, Maggio A. The risks of early cordocentesis (12–21 weeks): analysis of 500 procedures. Prenat Diagn. 1990;10:425–8.

    Article  PubMed  CAS  Google Scholar 

  137. Weiner CP. Cordocentesis. Obstet Gynecol Clin North Am. 1988;15(2):283–301.

    PubMed  CAS  Google Scholar 

  138. Boulot P, Deschamps F, Lefort G, Sarda P, Mares P, Hedon B, Laffargue F, Viala JL. Pure fetal blood samples obtained by cordocentesis: technical aspects of 322 cases. Prenat Diagn. 1990;10:93–100.

    Article  PubMed  CAS  Google Scholar 

  139. Maxwell DJ, Johnson P, Hurley P, Neales K, Allan L, Knott P. Fetal blood sampling and pregnancy loss in relation to indication. Br J Obstet Gynaecol. 1991;98:892–7.

    Article  PubMed  CAS  Google Scholar 

  140. Watson MS, Breg WR, Hobbins JC, Mahoney MJ. Cytogenetic diagnosis using midtrimester fetal blood samples: application to suspected mosaicism and other diagnostic problems. Am J Med Genet. 1984;19:805–13.

    Article  PubMed  CAS  Google Scholar 

  141. Shalev E, Zalel Y, Weiner E, Cohen H, Shneur Y. The role of cordocentesis in assessment of mosaicism found in amniotic fluid cell culture. Acta Obstet Gynecol Scand. 1994;73:119–22.

    Article  PubMed  CAS  Google Scholar 

  142. Liou JD, Chen C-P, Breg WR, Hobbins JC, Mahoney MJ, Yang-Feng TL. Fetal blood sampling and cytogenetic abnormalities. Prenat Diagn. 1993;13:1–8.

    Article  PubMed  CAS  Google Scholar 

  143. Gosden C, Nicolaides KH, Rodeck CH. Fetal blood sampling in investigation of chromosome mosaicism in amniotic fluid cell culture. Lancet. 1988;1(8586):613–17.

    Article  PubMed  CAS  Google Scholar 

  144. Kaffe S, Benn P, Hsu LYF. Fetal blood sampling in investigation of chromosome mosaicism in amniotic fluid cell culture. Lancet. 1988;2(8605):284.

    Article  PubMed  CAS  Google Scholar 

  145. Hook EB, Cross PK. Risk of chromosomally normal women to deliver chromosomally abnormal offspring, by maternal age. Am J Hum Genet. 1979;31:137A.

    Google Scholar 

  146. Nicolaides KH, Heath V, Cicero S. Increased fetal nuchal translucency at 11–14 weeks. Prenat Diagn. 2002;22:308–15.

    Article  PubMed  Google Scholar 

  147. Haak MC, van Vugt JM. Pathophysiology of increased nuchal translucency: a review of the literature. Hum Reprod. 2003;9:175–84.

    Google Scholar 

  148. Chasen ST, Sharma G, Kalish RB, Chervenak FA. First-trimester screening for aneuploidy with fetal nuchal translucency in a United States population. Ultrasound Obstet Gynecol. 2003;22:149–51.

    Article  PubMed  CAS  Google Scholar 

  149. Landwehr Jr JB, Johnson MP, Hume RF, Yaron Y, Sokol RJ, Evans MI. Abnormal nuchal findings on screening ultrasonography: aneuploidy stratification on the basis of ultrasonographic anomaly and gestational age at detection. Am J Obstet Gynecol. 1996;175:995–9.

    Article  PubMed  Google Scholar 

  150. Grandjean H, Sarramon MF. Sonographic measurement of nuchal skinfold thickness for detection of Down syndrome in the second-trimester fetus: a multicenter prospective study. Obstet Gynecol. 1995;85:103–6.

    Article  PubMed  CAS  Google Scholar 

  151. Nadel A, Bromley B, Benacerraf BR. Nuchal thickening or cystic hygromas in first- and early second-trimester fetuses: prognosis and outcome. Obstet Gynecol. 1993;82:43–8.

    PubMed  CAS  Google Scholar 

  152. van Vugt JMG, van Zalen-Sprock RM, Kostense PJ. First-trimester nuchal translucency: a risk analysis on fetal chromosome abnormality. Radiology. 1996;200:537–40.

    PubMed  Google Scholar 

  153. Pandya PP, Kondylios A, Hilbert L, Snijders RJM, Nicolaides KH. Chromosomal defects and outcome in 1015 fetuses with increased nuchal translucency. Ultrasound Obstet Gynecol. 1995;5:15–9.

    Article  PubMed  CAS  Google Scholar 

  154. Comas C, Martinez JM, Ojuel J, Casals E, Puerto B, Borrell A, Fortuny A. First-trimester nuchal edema as a marker of aneuploidy. Ultrasound Obstet Gynecol. 1995;5:26–9.

    Article  PubMed  CAS  Google Scholar 

  155. Szabó J, Gellén J, Szemere G. First-trimester ultrasound screening for fetal aneuploidies in women over 35 and under 35 years of age. Ultrasound Obstet Gynecol. 1995;5:161–3.

    Article  PubMed  Google Scholar 

  156. Brizot ML, Snijders RJM, Butler J, Bersinger NA, Nicolaides KH. Maternal serum hCG and fetal nuchal translucency thickness for the prediction of fetal trisomies in the first trimester of pregnancy. Br J Obstet Gynaecol. 1995;102:127–32.

    Article  PubMed  CAS  Google Scholar 

  157. Dugoff L. Ultrasound diagnosis of structural abnormalities in the first trimester. Prenat Diagn. 2002;22:316–20.

    Article  PubMed  Google Scholar 

  158. Clur SA, Ottencamp J, Bilardo CM. The nuchal translucency and the fetal heart: a literature review. Prenat Diagn. 2009;29(8):739–48.

    Article  PubMed  CAS  Google Scholar 

  159. Sau K, Langford B, Auld D, Maxwell A. Screening for trisomy 21: the significance of a positive second trimester serum screen in women screen negative after a nuchal translucency scan. J Obstet Gynaecol. 2003;21:145–8.

    Google Scholar 

  160. Cuckle H, Maymon R. Down syndrome risk calculation for a twin fetus taking account of the nuchal translucency in the co-twin. Prenat Diagn. 2010;30(9):827–33.

    Article  PubMed  Google Scholar 

  161. Wøjdemann KR, Larsen SO, Shalmi AC, Sundberg K, Tabor A, Christiansen M. Nuchal translucency measurements are highly correlated in both mono- and dichorionic twin pairs. Prenat Diagn. 2006;26(3):218–20.

    Article  PubMed  Google Scholar 

  162. Chen C-P, Liu F-F, Jan S-W, Lee C-C, Town D-D, Lan C-C. Cytogenetic evaluation of cystic hygroma associated with hydrops fetalis, oligohydramnios or intrauterine fetal death: the roles of amniocentesis, postmortem chorionic villus sampling and cystic hygroma paracentesis. Acta Obstet Gynecol Scand. 1996;75:454–8.

    Article  PubMed  CAS  Google Scholar 

  163. Paladini D, Calabro R, Palmieri S, D’Andrea T. Prenatal diagnosis of congenital heart disease and fetal karyotyping. Obstet Gynecol. 1993;81:679–82.

    PubMed  CAS  Google Scholar 

  164. Bronshtein M, Zimmer EZ, Gerlis LM, Lorber A, Drugan A. Early ultrasound diagnosis of fetal congenital heart defects in high-risk and low-risk pregnancies. Obstet Gynecol. 1993;82:225–9.

    PubMed  CAS  Google Scholar 

  165. Copel JA, Cullen M, Green JJ, Mahoney MJ, Hobbins JC, Kleinman CS. The frequency of aneuploidy in prenatally diagnosed congenital heart disease: an indication for fetal karyotyping. Am J Obstet Gynecol. 1988;158:409–12.

    PubMed  CAS  Google Scholar 

  166. Raymond FL, Simpson JM, Mackie CM, Sharland GK. Prenatal diagnosis of 22q11 deletions: a series of five cases with congenital heart defects. J Med Genet. 1997;34:679–82.

    Article  PubMed  CAS  Google Scholar 

  167. Botto LD, May K, Fernhoff PM, et al. A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics. 2003; 112:101–7.

    Article  PubMed  Google Scholar 

  168. Schechter AG, Fakhry J, Shapiro LR, Gewitz MH. In utero thickening of the chordae tendinae: a cause of intracardiac echogenic foci. J Ultrasound Med. 1987;6:691–5.

    PubMed  CAS  Google Scholar 

  169. Levy DW, Minitz MC. The left ventricular echogenic focus: a normal finding. Am J Roentgenol. 1988;150:85–6.

    Article  CAS  Google Scholar 

  170. Twining P. Echogenic foci in the fetal heart: incidence and association with chromosomal disease (abstract). Ultrasound Obstet Gynecol. 1993;190:175.

    Google Scholar 

  171. Petrikovsky BM, Challenger M, Wyse LJ. Natural history of echogenic foci within ventricles of the fetal heart. Ultrasound Obstet Gynecol. 1995;5:92–4.

    Article  PubMed  CAS  Google Scholar 

  172. Bronshtein M, Jakobi P, Ofir C. Multiple fetal intracardiac echogenic foci: not always a benign sonographic finding. Prenat Diagn. 1996;16:131–5.

    Article  PubMed  CAS  Google Scholar 

  173. Bromley B, Lieberman E, Laboda L, Benacerraf BR. Echogenic intracardiac focus: a sonographic sign for fetal Down syndrome. Obstet Gynecol. 1995;86:998–1001.

    Article  PubMed  CAS  Google Scholar 

  174. Norton ME, Brown P, Ashour AM. Echogenic focus in the fetal heart as a risk factor for Down syndrome. In: American College of Medical Genetics fourth annual meeting A80; 1997. p. 159.

    Google Scholar 

  175. Ranzini AC, McLean DA, Sharma S, Vintzileos AM. Fetal intracardiac echogenic foci: visualization depends on the orientation of the four-chamber view. J Ultrasound Med. 2001;20:763–6.

    PubMed  CAS  Google Scholar 

  176. Wax JR, Royer D, Mather J, Chen C, Aponte-Garcia A, Steinfeld JD, Ingardia CJ. A preliminary study of sonographic grading of fetal intracardiac echogenic foci: feasibility, reliability and association with aneuploidy. Ultrasound Obstet Gynecol. 2000;16:123–7.

    Article  PubMed  CAS  Google Scholar 

  177. Shipp TD, Bromley B, Lieberman E. The frequency of the detection of fetal echogenic intracardiac foci with respect to maternal race. Ultrasound Obstet Gynecol. 2000;15:460–2.

    Article  PubMed  CAS  Google Scholar 

  178. Benacerraf B. The history of the second-trisomy sonographic markers for detecting fetal Down syndrome, and their current role in obstetric practice. Prenat Diagn. 2010;30:644–52.

    Article  PubMed  Google Scholar 

  179. Prefumo F, Presti F, Thilaganathan B, Carvalho JS. Association between increased nuchal translucency and second trimester cardiac echogenic foci. Obstet Gynecol. 2003;101:899–904.

    Article  PubMed  Google Scholar 

  180. Cicero S, Sonek JD, McKenna DS, Croom CS, Johnson L, Nicolaides KH. Nasal bone hypoplasia in trisomy 21 at 15–22 weeks’ gestation. Ultrasound Obstet Gynecol. 2002;21:15–8.

    Article  Google Scholar 

  181. Larose C, Massoc P, Hillion Y, Bernard JP, Ville Y. Comparison of fetal nasal bone assessment by ultrasound at 11–14 weeks and by postmortem x-ray in trisomy 21: a prospective observational study. Ultrasound Obstet Gynecol. 2003;22:27–30.

    Article  PubMed  CAS  Google Scholar 

  182. Zoppi MA, Ibba RM, Axiana C, Floris M, Manca F, Monni G. Absence of fetal nasal bone and aneuploidies at first-trimester nuchal translucency screening in unselected pregnancies. Prenat Diagn. 2003;23:496–500.

    Article  PubMed  Google Scholar 

  183. Cicero S, Longo D, Rembouskos G, Sacchini C, Nicolaides KH. Absent nasal bone at 11–14 weeks of gestation and chromosomal defects. Ultrasound Obstet Gynecol. 2003;22:31–5.

    Article  PubMed  CAS  Google Scholar 

  184. Bilardo CM, Campogrande M, Krantz D, Hallahan T, Rossi C, Viora E. Measurement of nasal bone length at 11–14 weeks of pregnancy and its potential role in Down syndrome risk assessment. Ultrasound Obstet Gynecol. 2003;22:35–9.

    Article  Google Scholar 

  185. Cicero S, Bindra R, Rembouskos G, Spencer K, Nikolaides KH. Integrated ultrasound and biochemical screening for trisomy 21 using fetal nuchal translucency, absent fetal nasal bone, free beta-hCG and PAPP-A at 11 to 14 weeks. Prenat Diagn. 2003;23:306–10.

    Article  PubMed  Google Scholar 

  186. Svennekjaer S, Skibsted L. Webbing of the neck and nasal bone—prenatal screening for Down syndrome. Ugeskr Laeger. 2003;165:1768–71.

    PubMed  Google Scholar 

  187. Bunduki V, Ruano R, Miguelez J, Yoshizaki CT, Kahhale S, Zugaib M. Fetal nasal bone length: reference range and clinical application in ultrasound screening for trisomy 21. Ultrasound Obstet Gynecol. 2003;21(2):156–60.

    Article  PubMed  CAS  Google Scholar 

  188. Borrell A. Promises and pitfalls of first trimester sonographic markers in the detection of fetal aneuploidy. Prenat Diagn. 2009;29(1):62–8. Review.

    Article  PubMed  Google Scholar 

  189. Benacerraf BR, Mandell J, Estroff JA, Harlow BL, Frigoletto FD. Fetal pyelectasis: a possible association with Down syndrome. Obstet Gynecol. 1990;76:58–60.

    PubMed  CAS  Google Scholar 

  190. Wickstrom EA, Thangavelu M, Parilla BV, Tamura RK, Sabbagha RE. A prospective study of the association between isolated fetal pyelectasis and chromosomal abnormality. Obstet Gynecol. 1996;88:379–82.

    Article  PubMed  CAS  Google Scholar 

  191. Corteville JE, Dicke JM, Crane JP. Fetal pyelectasis and Down syndrome: is genetic amniocentesis warranted? Obstet Gynecol. 1992;79:770–2.

    PubMed  CAS  Google Scholar 

  192. Vintzileos AM, Egan JF. Adjusting the risk for trisomy 21 on the basis of second-trimester ultrasonography. Am J Obstet Gynecol. 1995;172:837–44.

    Article  PubMed  CAS  Google Scholar 

  193. Degani S, Leibovitz Z, Shapiro I, Gonen R, Ohel G. Fetal pyelectasis in consecutive pregnancies: a possible genetic predisposition. Ultrasound Obstet Gynecol. 1997;10:19–21.

    Article  PubMed  CAS  Google Scholar 

  194. Johnson CE, Elder JS, Judge NE, Adeeb FN, Grisoni ER, Fattlar DC. The accuracy of antenatal ultrasonography in identifying renal abnormalities. Am J Dis Child. 1992;146:1181–4.

    PubMed  CAS  Google Scholar 

  195. Chudleigh P, Pearce M, Campbell S. The prenatal diagnosis of transient cysts of the fetal choroid plexus. Prenat Diagn. 1984;4:135–7.

    Article  PubMed  CAS  Google Scholar 

  196. Thorpe-Beeston JG, Gosden CM, Nicolaides KH. Choroid plexus cysts and chromosomal defects. Br J Radiol. 1990;63:783–6.

    Article  PubMed  CAS  Google Scholar 

  197. Montemagno R, Soothill PW, Scarcelli M, Rodeck CH. Disappearance of fetal choroid plexus cysts during the second trimester in cases of chromosomal abnormality. Br J Obstet Gynaecol. 1995;102:752–3.

    Article  PubMed  CAS  Google Scholar 

  198. Nicolaides KH, Rodeck CH, Gosden CM. Rapid karyotyping in non-fetal malformations. Lancet. 1986;1:283–7.

    Article  PubMed  CAS  Google Scholar 

  199. Shields LE, Uhrich SB, Easterling TR, Cyr DR, Mack LA. Isolated fetal choroid plexus cysts and karyotype analysis: is it necessary? J Ultrasound Med. 1996;15:389–94.

    PubMed  CAS  Google Scholar 

  200. Morcos CL, Carlson DE, Platt LD. Choroid plexus cysts and the risk of aneuploidy. Am J Obstet Gynecol. (abstract) 1997;213:S70.

    Google Scholar 

  201. Porto M, Murata Y, Warneke LA, Keegan KA. Fetal choroid plexus cysts: an independent risk factor for chromosomal anomalies. J Clin Ultrasound. 1993;21:103–8.

    Article  PubMed  CAS  Google Scholar 

  202. Kupferminc MJ, Tamura RK, Sabbagha RE, Parilla BV, Cohen LS, Pergament E. Isolated choroid plexus cyst(s): an indication for amniocentesis. Am J Obstet Gynecol. 1994;171:1068–71.

    PubMed  CAS  Google Scholar 

  203. Walkinshaw S, Pilling D, Spriggs A. Isolated choroid plexus cysts – the need for routine offer of karyotyping. Prenat Diagn. 1994;14:663–7.

    Article  PubMed  CAS  Google Scholar 

  204. Gupta JK, Cave M, Lilford RJ, Farrell TA, Irving HC, Mason G, Hau CM. Clinical significance of fetal choroid plexus cysts. Lancet. 1995;346:724–9.

    Article  PubMed  CAS  Google Scholar 

  205. Gross SJ, Shulman LP, Tolley EA, Emerson DS, Felker RE, Simpson JL, Elias S. Isolated fetal choroid plexus cysts and trisomy 18: a review and meta-analysis. Am J Obstet Gynecol. 1995;172:83–7.

    Article  PubMed  CAS  Google Scholar 

  206. Hook EB. Choroid plexus cysts diagnosed prenatally as an independent risk factor for cytogenetic abnormality. Hum Genet. 1993;91:514–18.

    Article  PubMed  CAS  Google Scholar 

  207. Nyberg DA, Kramer D, Resta RG, Kapur R, Mahony BS, Luthy DA, Hickok D. Prenatal sonographic findings of trisomy 18: review of 7 cases. J Ultrasound Med. 1993;12:103–13.

    PubMed  CAS  Google Scholar 

  208. Sarno AP, Polzin WJ, Kalish VB. Fetal choroid plexus cysts in association with cri du chat (5p-) syndrome. Am J Obstet Gynecol. 1993;169:1614–15.

    PubMed  Google Scholar 

  209. Meyer P, Chitkara U, Holbrook RH, El-Sayed Y, Druzin M, Tung R. Complex choroid plexus cysts and the risk of aneuploidy. Am J Obstet Gynecol. (abstract) 1997;215:S70.

    Google Scholar 

  210. Demasio K, Canterino J, Ananth C, Fernandez C, Smulian J, Vintzileos A. Isolated choroid plexus cysts in low-risk women less than 35 years old. Am J Obstet Gynecol. 2002;187:1246–9.

    Article  PubMed  Google Scholar 

  211. Yoder PR, Sabbagha RE, Gross SJ, Zelop CM. The second-trimester fetus with isolated choroids plexus cysts: a meta-analysis of risk of trisomies 18 and 21. Obstet Gynecol. 1999;93:869–72.

    Article  PubMed  CAS  Google Scholar 

  212. Ghidini A, Strobelt N, Locatelli A, Mariani E, Piccoli MG, Vergani P. Isolated fetal choroid plexus cysts: role of ultrasonography in the establishment of the risk of trisomy 18. Am J Obstet Gynecol. 2000;182:972–7.

    Article  PubMed  CAS  Google Scholar 

  213. DiGiovanni LM, Quinlan MP, Verp MS. Choroid plexus cysts: infant and early childhood developmental outcome. Obstet Gynecol. 1997;90:191–4.

    Article  PubMed  CAS  Google Scholar 

  214. Vintzileos AM, Egan JFX, Smulian JC, Campbell WA, Guzman ER, Rodis JF. Adjusting the risk for trisomy 21 by a simple ultrasound method using fetal long-bone biometry. Obstet Gynecol. 1996;87:953–8.

    Article  PubMed  CAS  Google Scholar 

  215. Shah YG, Eckl CJ, Stinson SK, Woods JR. Biparietal diameter/femur length ratio, cephalic index, and femur length measurements: not reliable screening techniques for Down syndrome. Obstet Gynecol. 1990;75:186–8.

    PubMed  CAS  Google Scholar 

  216. Benacerraf BR, Nadel A, Bromley B. Identification of second-trimester fetuses with autosomal trisomy by use of a sonographic scoring index. Radiology. 1994;193:135–40.

    PubMed  CAS  Google Scholar 

  217. Lai FM, Yeo GS. Reference charts of foetal biometry in Asians. Singapore Med J. 1995;36:628–36.

    PubMed  CAS  Google Scholar 

  218. Cho HJK, Won HS, Ju DH, Roh HJ, Lee PR, Him A. Evaluation of the usefulness of the fetal femur length with respect to gestational age to detect Down syndrome in Korean subjects. Prenat Diagn. 2010;30:734–8.

    Article  PubMed  CAS  Google Scholar 

  219. Scioscia AL, Pretorius DH, Budorick NE, Cahill TC, Axelrod FT, Leopold GR. Second-trimester echogenic bowel and chromosomal abnormalities. Am J Obstet Gynecol. 1992;167:889–94.

    PubMed  CAS  Google Scholar 

  220. Nyberg DA, Dubinsky T, Resta RG, Mahony BS, Hickok DE, Luthy DA. Echogenic fetal bowel during the second trimester: clinical importance. Radiology. 1993;188:527–31.

    PubMed  CAS  Google Scholar 

  221. Sepulveda W, Hollingsworth J, Bower S, Vaughan JI, Fisk NM. Fetal hyperechogenic bowel following intra-amniotic bleeding. Obstet Gynecol. 1994;83:947–50.

    Article  PubMed  CAS  Google Scholar 

  222. Bromley B, Doubilet P, Frigoletto FD, Krauss C, Estroff JA, Benacerraf BR. Is fetal hyperechoic bowel on second-trimester sonogram an indication for amniocentesis? Obstet Gynecol. 1994;83:647–51.

    PubMed  CAS  Google Scholar 

  223. Yaron Y, Hassan S, Kramer RL, Zador I, Ebrahim SAD, Johnson MP, Evans MI. Fetal echogenic bowel in the second trimester – prognostic implication. Am J Obstet Gynecol. 1997;176:209.

    Article  Google Scholar 

  224. Muller F, Dommergues M, Aubry M-C, Simon-Bouy B, Gautier E, Qury J-F, Narcy F. Hyperechogenic fetal bowel: an ultrasonographic marker for adverse fetal and neonatal outcome. Am J Obstet Gynecol. 1995;173:508–13.

    Article  PubMed  CAS  Google Scholar 

  225. MacGregor SN, Tamura R, Sabbagha R, Brenhofer JK, Kambich MP, Pergament E. Isolated hyperechoic fetal bowel: significance and implications for management. Am J Obstet Gynecol. 1995;173:1254–8.

    Article  PubMed  CAS  Google Scholar 

  226. Pletcher BA, Williams MK, Mulivor RA, Barth D, Linder C, Rawlinson K. Intrauterine cytomegalovirus infection presenting as fetal meconium peritonitis. Obstet Gynecol. 1991;78:903–5.

    PubMed  CAS  Google Scholar 

  227. Forouzan I. Fetal abdominal echogenic mass: an early sign of intrauterine cytomegalovirus infection. Obstet Gynecol. 1992;80:535–7.

    PubMed  CAS  Google Scholar 

  228. Peters MT, Lowe TW, Carpenter A, Kole S. Prenatal diagnosis of congenital cytomegalovirus infection with abnormal triple-screen results and hyperechoic fetal bowel. Am J Obstet Gynecol. 1995;173:953–4.

    Article  PubMed  CAS  Google Scholar 

  229. Slotnick RN, Abuhamad AZ. Prognostic implications of fetal echogenic bowel. Lancet. 1996;347:85–7.

    Article  PubMed  CAS  Google Scholar 

  230. Achiron R, Seidman DS, Horowitz A, Mashiach S, Goldman B, Lipitz S. Hyperechogenic bowel and elevated serum alpha-fetoprotein: a poor fetal prognosis. Obstet Gynecol. 1996;88:368–71.

    Article  PubMed  CAS  Google Scholar 

  231. Sepulveda W, Bower S, Fisk NM. Third-trimester hyperechogenic bowel in Down syndrome. Am J Obstet Gynecol. 1995;172:210–11.

    Article  PubMed  CAS  Google Scholar 

  232. Sepulveda W, Reid R, Nicolaidis P, Prendiville O, Chapman RS, Fisk NM. Second-trimester echogenic bowel and intraamniotic bleeding: association between fetal bowel echogenicity and amniotic fluid spectrophotometry at 410 nm. Am J Obstet Gynecol. 1996;174:839–42.

    Article  PubMed  CAS  Google Scholar 

  233. DeVore G, Alfi O. The use of color Doppler ultrasound to identify fetuses at increased risk for trisomy 21: an alternative for high risk patients who decline genetic amniocentesis. Obstet Gynecol. 1995;85:378–86.

    Article  PubMed  CAS  Google Scholar 

  234. Bahado-Singh RO, Deren Ö, Tan A, D’Ancona RL, Hunter D, Copel JA, Mahoney MJ. Ultrasonographically adjusted midtrimester risk of trisomy 21 and significant chromosomal defects in advanced maternal age. Am J Obstet Gynecol. 1996;175:1563–8.

    Article  PubMed  CAS  Google Scholar 

  235. Vintzileos AM, Campbell WA, Guzman ER, Smulian JC, McLean DA, Ananth CV. Second-trimester ultrasound markers for detection of trisomy 21: which markers are best? Obstet Gynecol. 1997;89:941–4.

    Article  PubMed  CAS  Google Scholar 

  236. Nyberg DA, Souter VL. Sonographic markers of fetal trisomies: second trimester. J Ultrasound Med. 2001;20:655–74.

    PubMed  CAS  Google Scholar 

  237. Shipps TD, Benacerraf BR. Second trimester ultrasound screening for chromosomal abnormalities. Prenat Diagn. 2002;22:296–307.

    Article  Google Scholar 

  238. Bromley B, Lieberman E, Shipp TD, Benacerraf BR. The genetic sonogram: a method of risk assessment for Down syndrome in the second trimester. J Ultrasound Med. 2002;21:1087–96.

    PubMed  Google Scholar 

  239. DeVore GR. The genetic sonogram: its use in the detection of chromosomal abnormalities in fetuses of women of advanced maternal age. Prenat Diagn. 2001;21:40–5.

    Article  PubMed  CAS  Google Scholar 

  240. Malone FD, Canick JA, Ball RH, et al., for the First- and Second-Trimester Evaluation of Risk (FASTER) Research Consortium. First-trimester or second-trimester screening, or both, for Down’s syndrome. N Engl J Med. 2005;353(19):2001–11.

    Google Scholar 

  241. Tsai LJ, Ho M, Pressman EK, Thornburg LL. Ultrasound screening for fetal aneuploidy using soft markers in the overweight and obese gravida. Prenat Diagn. 2010;30:821–6.

    Article  PubMed  Google Scholar 

  242. Aagaard-Tillery KM, Porter TF, Malone FD, Nyberg DA, Collins J, Comstock CH, Hankins G, Eddleman K, Dugoff L, Wolfe HM, D’Alton ME. Influence of maternal BMI on genetic sonography in the FaSTER trial. Prenat Diagn. 2010;30:14–22.

    PubMed  Google Scholar 

  243. Feuchtbaum LB, Cunningham G, Waller DK, Lustig LS, Tompkinson DG, Hook EB. Fetal karyotyping for chromosome abnormalities after an unexplained elevated maternal serum alpha-fetoprotein screening. Obstet Gynecol. 1995;86:248–54.

    Article  PubMed  CAS  Google Scholar 

  244. Merkatz IR, Nitowsky HM, Macri JN, Johnson WE. An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am J Obstet Gynecol. 1984;148:886–94.

    PubMed  CAS  Google Scholar 

  245. Bogart MH, Pandian MR, Jones OW. Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat Diagn. 1987;7:623–30. den Berg C, Van Opstal D, Brandenburg H, Wildschut HIJ, den Hollander NS, Pijpers L, Galjaard RJH, Los FJ. Accuracy of abnormal karyotypes after the analysis of both short-and long-term culture of chorionic villi. Prenat Diagn. 2002;20:956–69.

    Google Scholar 

  246. Canick JA, Knight GJ, Palomaki GE, Haddow JE, Chuckle HS, Wald NJ. Low second trimester maternal serum unconjugated oestriol in pregnancies with Down’s syndrome. Br J Obstet Gynaecol. 1988;95:330–3.

    Article  PubMed  CAS  Google Scholar 

  247. Reynolds TM, Nix AB, Dunstan FD, Dawson AJ. Age-specific detection and false-positive rates: an aid to counseling in Down syndrome risk screening. Obstet Gynecol. 1993;81:447–50.

    PubMed  CAS  Google Scholar 

  248. Palomaki GE, Haddow JE, Knight GJ, Wald NJ, Kennard A, Canick JA, Saller DN, Blitzer MG, Dickerman LH, Fisher R, Hansmann D, Hansmann M, Luthy DA, Summers AM, Wyatt P. Risk-based prenatal screening for trisomy 18 using alpha-fetoprotein, unconjugated oestriol and human chorionic gonadotropin. Prenat Diagn. 1995;15:713–23.

    Article  PubMed  CAS  Google Scholar 

  249. Benn PA, Horne D, Briganti S, Greenstein RM. Prenatal diagnosis of diverse chromosome abnormalities in a population of patients identified by triple-marker testing as screen positive for Down syndrome. Am J Obstet Gynecol. 1995;173:496–501.

    Article  PubMed  CAS  Google Scholar 

  250. Benn PA, Kaminsky LM, Ying J, Borgida AF, Egan JF. Combined second-trimester biochemistry and ultrasound screening for Down syndrome. Obstet Gynecol. 2002;100:1168–76.

    Article  PubMed  Google Scholar 

  251. Benn PA, Fang M, Egan JF, Horne D, Collins R. Incorporation of inhibin-A in second-trimester screening for Down syndrome. Obstet Gynecol. 2003;101:451–4.

    Article  PubMed  CAS  Google Scholar 

  252. Hackshaw AK, Wald NJ. Repeat testing in antenatal screening for Down syndrome using dimeric inhibin-A in combination with other maternal serum markers. Prenat Diagn. 2001;21:58–61.

    Article  PubMed  CAS  Google Scholar 

  253. Spencer K, Liao AW, Ong CY, Flack NJ, Nicolaides KH. Maternal serum activin A and inhibin A in trisomy 18 pregnancies at 10–14 weeks. Prenat Diagn. 2001;7:571–4.

    Article  Google Scholar 

  254. Krantz DA, Larsen JW, Buchanan PD, Macri JN. First-trimester Down syndrome screening: free ß-human chorionic gonadotropin and pregnancy-associated plasma protein A. Am J Obstet Gynecol. 1996;174:612–16.

    Article  PubMed  CAS  Google Scholar 

  255. Wald NJ, Kennard A, Hackshaw AK. First trimester serum screening for Down’s syndrome. Prenat Diagn. 1995;15:1227–40.

    Article  PubMed  CAS  Google Scholar 

  256. Wapner R, Rhom E, Simpson JL, et al. First-trimester screening for trisomies 21 and 18. N Engl J Med. 2003;349:1405–13.

    Article  PubMed  CAS  Google Scholar 

  257. Wapner RJ. First trimester screening: the BUN study. Semin Perinatol. 2005;29(4):236–9.

    Article  PubMed  Google Scholar 

  258. Palomaki GE, Neveux LM, Knight GJ, Haddow JE. Maternal serum-integrated screening for trisomy 18 using both first- and second-trimester markers. Prenat Diagn. 2003;23:243–7.

    Article  PubMed  Google Scholar 

  259. Gardner RJM, Sutherland GR. Chromosome abnormalities and genetic counselling. 3rd ed. New York: Oxford University Press; 2004.

    Google Scholar 

  260. MacRae AR, Chodirker BN, Davies GA, Palomaki GE, Knight GJ, Minett J, Kavsak PA, Toi A, Chitayat D, Van Caeseele PG. Second and first trimester estimation of risk for Down syndrome: implementation and performance in the SAFER study. Prenat Diagn. 2010;30:459–66.

    PubMed  Google Scholar 

  261. Warburton D, Dallaire L, Thangavelu M, Ross L, Levin B, Kline J. Trisomy recurrence: a reconsideration based on North American data. Am J Hum Genet. 2004;75:376–85.

    Article  PubMed  CAS  Google Scholar 

  262. Robinson WP, McFadden DE, Stephenson MD. The origin of abnormalities in recurrent aneuploidy/polyploidy. Am J Hum Genet. 2001;69:1245–54.

    Article  PubMed  CAS  Google Scholar 

  263. Röthlisberger B, Kotzot D. Recurrence risk in de novo structural chromosomal rearrangements. Am J Med Genet A. 2007;143A(15): 1708–14.

    Article  PubMed  Google Scholar 

  264. Schwarz R, Johnston RB. Folic acid supplementation-when and how. Obstet Gynecol. 1996;88:886–7.

    Article  PubMed  CAS  Google Scholar 

  265. Seller MJ. Neural tube defects, chromosome abnormalities and multiple closure sites for the human neural tube. Clin Dysmorphol. 1995;4(3):202–7.

    Article  PubMed  CAS  Google Scholar 

  266. Hanson JP, Hiett AK, Palmer CG, Golichowski AM. Prenatal ultrasound detection of isolated neural tube defects: is cytogenetic evaluation warranted? Obstet Gynecol. 1995;86(4 Pt 1):595–9.

    Google Scholar 

  267. Harmon JP, Hiett AK, Palmer CG, Golichowski AM. Prenatal ultrasound detection of isolated neural tube defects: is cytogenetic evaluation warranted? Obstet Gynecol. 1995;86(4 Pt 1):595–9.

    PubMed  CAS  Google Scholar 

  268. McGaughran J, Stevens R, Blond A, Perry C. Nasal encephalocele in a child with mosaic trisomy 14. Clin Dysmorphol. 2009;18(3): 164–5.

    Article  PubMed  Google Scholar 

  269. Chen CP, Chern SR, Cheng SJ, Chang TY, Yeh LF, Lee CC, Pan CW, Wang W, Tzen CY. Second-trimester diagnosis of complete trisomy 9 associated with abnormal maternal serum screen results, open sacral spina bifida and congenital diaphragmatic hernia, and review of the literature. Taiwan J Obstet Gynecol. 2009;48(3): 218–24.

    Article  PubMed  Google Scholar 

  270. Chen CP. Prenatal sonographic features of fetuses in trisomy 13 pregnancies (II). Prenat Diagn. 2004;28(9):865–7.

    Article  Google Scholar 

  271. Nickel RE, Pillers DA, Merkens M, Magenis RE, Driscoll DA, Emanuel BS, Zonana J. Velo-cardio-facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region. Am J Med Genet. 1994;52(4):445–9.

    Article  PubMed  CAS  Google Scholar 

  272. Seller MJ, Mohammed S, Russell J, Ogilvie C. Microdeletion 22q11.2, Kousseff syndrome and spina bifida. Clin Dysmorphol. 2002;11(2):113–15.

    Article  PubMed  Google Scholar 

  273. Chen CP, Chen YJ, Chern SR, Tsai FJ, Lin HH, Lee CC, Wang W. Prenatal diagnosis of mosaic 1q31.3q32.1 trisomy associated with occipital encephalocele. Prenat Diagn. 2008;28(9):865–7.

    Article  PubMed  Google Scholar 

  274. Kirchhoff M, Bisgaard AM, Stoeva R, Dimitrov B, Gillessen-Kaesbach G, Fryns JP, Rose H, Grozdanova L, Ivanov I, Keymolen K, Fagerberg C, Tranebjaerg L, Skovby F, Stefanova M. Phenotype and 244 k array-CGH characterization of chromosome 13q deletions: an update of the phenotypic map of 13q21.1-qter. Am J Med Genet A. 2009;149A(5):894–905.

    Article  PubMed  CAS  Google Scholar 

  275. Gustavsson P, Schoumans J, Staaf J, Borg A, Nordensköld M, Annerén G. Duplication 16q12.1-q22.1 characterized by array CGH in a girl with spina bifida. Eur J Med Genet. 2011;50(3):237–41.

    Article  Google Scholar 

  276. Ben AI, Hannachi H, Sayah N, Saad A, Elghezal H. Chromosomal microarray analysis in a girl with mental retardation and spina bifida. Pediatr Neurol. 2011;44(1):65–8.

    Article  Google Scholar 

  277. Daniel A, Hook EB, Wulf G. Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories. Am J Med Genet. 1989;33(1):14–53.

    Article  PubMed  CAS  Google Scholar 

  278. Kaiser P. Pericentric inversions: their problems and clinical significance. In: The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss; 1988. p. 163–210.

    Google Scholar 

  279. Madan K. Paracentric inversions: a review. Hum Genet. 1995;96: 503–15.

    Article  PubMed  CAS  Google Scholar 

  280. Grass F, McCombs J, Scott CI, Young RS, Moore CM. Reproduction in XYY males: two new cases and implications for genetic counseling. Am J Med Genet. 1984;19:553–60.

    Article  PubMed  CAS  Google Scholar 

  281. Otani T, Roche M, Miquike M, Colis P, Escudero T, Munné S. Preimplantation genetic diagnosis significantly improves the pregnancy outcome of translocation carriers with a history of recurrent miscarriage and unsuccessful pregnancies. Reprod Biomed Online. 2006;13(6):869–74.

    Article  PubMed  Google Scholar 

  282. Munné S, Sandalinas M, Escudero T, Fung J, Gianaroli L, Cohen C. Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril. 2000;73(6):1209–18.

    Article  PubMed  Google Scholar 

  283. Oliver TR, Bhise A, Feingold E, Tinker S, Masse N, Sherman SL. Investigation of factors associated with paternal nondisjunction of chromosome 21. Am J Med Genet A. 2009;149(8):1685–90.

    Google Scholar 

  284. Ferguson-Smith MA, Yates JRW. Maternal age specific rates for chromosome aberrations and factors influencing them: report of a collaborative European study on 52965 amniocenteses. Prenat Diagn. 1984;4:5–44.

    Article  PubMed  Google Scholar 

  285. Roecker GO, Huether CA. An analysis for paternal-age effect in Ohio’s Down syndrome births, 1970–1980. Am J Hum Genet. 1983;35:1297–306.

    PubMed  CAS  Google Scholar 

  286. Hook EB, Regal RR. A search for a paternal-age effect upon cases of 47,+21 in which the extra chromosome is of paternal origin. Am J Hum Genet. 1984;36:413–21.

    PubMed  CAS  Google Scholar 

  287. Roth M-P, Stoll C. Paternal age and Down’s syndrome diagnosed prenatally: no association in French data. Prenat Diagn. 1983;3:327–35.

    Article  PubMed  CAS  Google Scholar 

  288. Orioli IM, Castilla EE, Scarano G, Mastroiacovo P. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta. Am J Med Genet. 1995;59:209–17.

    Article  PubMed  CAS  Google Scholar 

  289. Toriello HV, Meck MJM, Practice P, Committee G. Statement on guidance for genetic counseling in advanced paternal age. Genet Med. 2008;10(6):457–60.

    Article  PubMed  Google Scholar 

  290. Worton RG, Stern R. A Canadian collaborative study of mosaicism in amniotic fluid cell cultures. Prenat Diagn. 1984;4:131–44.

    Article  PubMed  Google Scholar 

  291. Bui T-H, Iselius L, Lindsten J. European collaborative study on prenatal diagnosis: mosaicism, pseudomosaicism and single abnormal cells in amniotic fluid cell cultures. Prenat Diagn. 1984;4:145–62.

    Article  PubMed  Google Scholar 

  292. Hsu LYF. United States survey on chromosome mosaicism and pseudomosaicism in prenatal diagnosis. Prenat Diagn. 1984;4: 97–130.

    Article  PubMed  Google Scholar 

  293. Robinson WP, Binkert F, Bernasconi F, Lorda-Sanchez I, Werder EA, Schinzel AA. Molecular studies of chromosomal mosaicism: relative frequency of chromosome gain or loss and possible role of cell selection. Am J Hum Genet. 1995;56:444–51.

    PubMed  CAS  Google Scholar 

  294. Stoll C, Chognot D, Halb A, Luckel JC. Trisomy 9 mosaicism in two girls with multiple congenital malformations and mental retardation. J Med Genet. 1992;30:433–5.

    Article  Google Scholar 

  295. Guichet A, Briault S, Toutain A, Paillet C, Descamps P, Pierres F, Body G, Moraine CL. Prenatal diagnosis of trisomy 8 mosaicism in cvs after abnormal ultrasound findings at 12 weeks. Prenat Diagn. 1995;15(8):769–72.

    Article  PubMed  CAS  Google Scholar 

  296. Takahashi H, Hayashi S, Miura Y, Tsukamoto K, Kosaki R, Itoh Y, Sago H. Trisomy 9 mosaicism diagnosed in utero. Obstet Gynecol Int. 2010;2010:1–4.

    Google Scholar 

  297. Schuring-Blom GH, Boer K, Knegt AC, Verjaal M, Leschot NJ. Trisomy 13 or 18 (mosaicism) in first trimester cytotrophoblast cells: false positive results in 11 out of 51 cases. Eur J Obstet Gynecol Reprod Biol. 2002;101:161–8.

    Article  PubMed  Google Scholar 

  298. Wallerstein R, Yu M-T, Neu RL, et al. Common trisomy mosaicism diagnosed in amniocytes involving chromosomes 13, 18, 20 and 21: karyotype-phenotype correlations. Prenat Diagn. 2000;20:103–22.

    Article  PubMed  CAS  Google Scholar 

  299. Brosens J, Overton C, Lavery SA, Thornton S. Trisomy 12 mosaicism diagnosed by amniocentesis. Acta Obstet Gynecol Scand. 1996;75:79–81.

    Article  PubMed  CAS  Google Scholar 

  300. Steinberg WN, Soukup S, King JL, Dignan SJ. Prenatal diagnosis of trisomy 20 by chorionic villus sampling (CVS): a case report with long-term outcome. Prenat Diagn. 2001;21:1111–13.

    Article  Google Scholar 

  301. Angell RR, Xian J, Keith J, Ledger W, Baird DT. First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenet Cell Genet. 1994;65:194–202.

    Article  PubMed  CAS  Google Scholar 

  302. Wolstenholme J. Review article: an audit of trisomy 16 in man. Prenat Diagn. 1995;15:109–21.

    Article  PubMed  CAS  Google Scholar 

  303. Yancey MK, Hardin EL, Pacheco C, Kuslich CD, Donlon TA. Non-mosaic trisomy 16 in a third-trimester fetus. Obstet Gynecol. 1996;87:856–60.

    Article  PubMed  CAS  Google Scholar 

  304. Devi AS, Velinov M, Kamath MV, Eisenfeld L, Neu R, Ciarleglio L, Greenstein R, Benn P. Variable clinical expression of mosaic trisomy 16 in the newborn infant. Am J Med Genet. 1993;47:294–8.

    Article  PubMed  CAS  Google Scholar 

  305. Benn P. Trisomy 16 and trisomy 16 mosaicism: a review. Am J Med Genet. 1998;79:121–33.

    Article  PubMed  CAS  Google Scholar 

  306. Hsu LYF, Yu M-T, Neu R, et al. Rare trisomy mosaicism diagnosed in amniocytes, involving an autosome other than chromosomes 13, 18, 20, and 21: karyotype/phenotype correlations. Prenat Diagn. 1999;17:201–42.

    Article  Google Scholar 

  307. Phillips OP, Tharapel AT, Lerner JL, Park VM, Wachtel SS, Shulman LP. Risk of fetal mosaicism when placental mosaicism is diagnosed by chorionic villus sampling. Am J Obstet Gynecol. 1996;174(3):850–5.

    Article  PubMed  CAS  Google Scholar 

  308. Yong PJ, Kalousek DK, Robinson WP. Clinical aspects, prenatal diagnosis and pathogenesis of trisomy 16 mosaicism. J Med Genet. 2003;40:175–82.

    Article  PubMed  CAS  Google Scholar 

  309. Langlois S, Yong PJ, Barrett I, Kalousek DK, Miny P, Exeler R, Morris K, Robinson WP. Postnatal follow-up of prenatally diagnosed trisomy 16 mosaicism. Prenat Diagn. 2006;26(6):548–58.

    Article  PubMed  Google Scholar 

  310. Leclercq S, Baron X, Jacquemont M-L, Cuillier F, Cartault F. Mosaic trisomy 22: five new cases with variable outcomes. Implications for genetic counselling and clinical management. Prenat Diagn. 2010;30:168–72.

    Article  PubMed  Google Scholar 

  311. Persutte WH, Lenke RR. Failure of amniotic-fluid-cell growth: is it related to fetal aneuploidy? Lancet. 1995;14:96–7.

    Article  Google Scholar 

  312. Nuss S, Brebaum D, Grond-Ginsbach C. Maternal cell contamination in amniotic fluid samples as a consequence of the sampling technique. Hum Genet. 1994;93:121–4.

    Article  PubMed  CAS  Google Scholar 

  313. Elias S, Simpson JL. Techniques and safety of genetic amniocentesis and chorionic villus sampling. In: Sabbagha RA, editor. Diagnostic ultrasound applied to obstetrics and gynecology. 3rd ed. Philadelphia: Lippincott; 1994. p. 113.

    Google Scholar 

  314. Friedman JM. Review. High-resolution array genomic hybridization in prenatal diagnosis. Prenat Diagn. 2009;29:20–8.

    Article  PubMed  CAS  Google Scholar 

  315. Lee C. The future of prenatal cytogenetic diagnostics: a personal perspective. Prenat Diagn. 2010;30:706–9.

    Article  PubMed  Google Scholar 

  316. American College of Obstetrics and Gynecologists. ACOG Committee Opinion no. 446: array comparative genomic hybridization in prenatal diagnosis. Obstet Gynecol. 2009;114:1161–3.

    Article  Google Scholar 

  317. Smith MB, Matthews A. A description of genetic counselors’ views and current practice with regard to the use of array CGH for prenatal diagnosis. Case Western Reserve University. Submitted in partial fulfillment of the requirements for a degree of Master of Science; 2009.

    Google Scholar 

  318. Rickman L, Fieger H, Shaw-Smith C, Nash R, Cirigliano V, Voglino B, Ng BL, Scott C, Whittaker J, Adnolfi N, Carter NP, Bobrow MJ. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J Med Genet. 2008;43(4):356–61.

    Google Scholar 

  319. Van den Veyver IB, Patel A, Shaw CA, Pursley AN, Kang S-HL, Simovich MJ, Ward PA, Darilek S, Johnson A, Neill SE, Bi W, White LD, Eng CM, Lupski JR, Cheung SW, Beaudet A. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn. 2009;29:29–39.

    Article  PubMed  CAS  Google Scholar 

  320. Kleeman L, Bianchi DW, Shaffer LG, Rorem E, Cowan J, Craigo SD, Tighiouart H, Wilkins-Haug LE. Use of array comparative genomic hybridization for prenatal diagnosis of fetuses with sonographic anomalies and normal metaphase karyotype. Prenat Diagn. 2009;29:1213–17.

    Article  PubMed  Google Scholar 

  321. Hillman SC, Pretlove S, Coomsaramy A, McMullan DJ, Davison EV, Maher ER, Kelly MD. Additional information from array comparative genomic hybridization (array CGH) over conventional karyotyping in prenatal diagnosis—a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2011;37(1):6–14.

    Article  PubMed  CAS  Google Scholar 

  322. Cheung SW, Shaw CA, Scott DA, Patel A, Sahoo T, Bacino C, Pursley A, Li J, Erickson R, Gropman AL, Miller DT, Seashore MR, Summers AM, Stankiewicz P, Chinault AC, Lupski JR, Beaudet AL, Sutton VR. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A. 2007;143A:1679–86.

    Article  PubMed  Google Scholar 

  323. Ballif BC, Rorem EA, Sundin K, Lincicum M, Gaskin S, Coppinger J, Kashork CD, Shaffer LG, Bejjani BA. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A. 2006;140A:2757–67.

    Article  Google Scholar 

  324. Chiu RWK, Akolekar R, Zheng YWL, Leung TY, Sun H, Chan KCA, Lun FMF, Go ATJI, Lau ElT, To WWK, Leung WC, Tang RYK, Au-Yeung SKC, Lam H, Kung YY, Zhang Z, van Vugt JMG, Minekawa R, Tang MHY, Wang J, Oudejans CBM, Lau TK, Nicolaides KH, Lo YMD. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. 2011;342:c7401. doi:10.1136/bmj.c7401.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Marie Randolph M.D., M.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Randolph, L.M. (2013). Prenatal Cytogenetics. In: Gersen, S., Keagle, M. (eds) The Principles of Clinical Cytogenetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1688-4_12

Download citation

Publish with us

Policies and ethics