Skip to main content

Image-Guided Radiotherapy and Prostate Cancer

  • Reference work entry
  • First Online:
Image-Guided Cancer Therapy
  • 1483 Accesses

Abstract

The role of imaging in medicine is in constant flux and utilization now extends well beyond its initial intent as a diagnostic modality. In the field of radiation oncology, imaging has historically been employed to define the treatment field or target at the time of radiation planning. With improvements in imaging and greater accessibility, the incorporation of daily imaging into treatment has improved accuracy and precision of radiation delivery. Early prostate cancer is a very treatable disease, but requires high doses of radiation for optimal local control. Current standard treatment dose is well beyond the tolerance of adjacent normal tissues. Dose escalation for the treatment of prostate cancer is achieved by shrinking field sizes in addition to accurate and precise delivery of radiation. Image-guided radiotherapy (IGRT) involves imaging prior to daily treatment to compensate for organ motion and daily setup errors. The ability to shrink fields and escalate dose has greatly improved outcomes in definitive radiation therapy for early prostate cancer improving local control without increasing treatment-related morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. IJROBP. 1991;21:109–22.

    CAS  Google Scholar 

  2. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. IJROBP. 2010;76(3):S10–9.

    Google Scholar 

  3. Kuban DA, Tucker SL, Dong L, et al. Long-term results of the MD Anderson randomized dose-escalation trial for prostate cancer. IJROBP. 2008;70:67–75.

    Google Scholar 

  4. Zeitman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs. high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized control trial. JAMA. 2005;294:1233–40.

    Article  Google Scholar 

  5. Sathya JR, Davis IR, Julian JA, et al. Randomized trial comparing iridium implant plus external beam radiation therapy with external beam radiation therapy alone in node-negative locally advanced cancer of the prostate. JCO. 2005;23:1192–200.

    Article  Google Scholar 

  6. Peeters ST, Heemsbergen WD, Koper PC, et al. Dose–response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. JCO. 2006;24:1990–9.

    Article  Google Scholar 

  7. Shipley WU, Verhey LJ, Munzenrider JE, et al. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional irradiation using photons alone. IJROBP. 1995;32:3–12.

    CAS  Google Scholar 

  8. Dearnaley DP, Sydes MR, Graham JD, et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomized controlled trial. Lancet Oncol. 2007;8:475–87.

    Article  PubMed  Google Scholar 

  9. Beckendorf V, Guerif S, Le Prise E, et al. The GETUG 70 Gy vs. 80 Gy randomized trial for localized prostate cancer: feasibility and acute toxicity. IJROBP. 2004;60:1056–65.

    Google Scholar 

  10. Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. IJROBP. 2009;74(5):1405–18.

    Google Scholar 

  11. Brabbins D, Kestin L, Yan D, et al. Improvements in clinical outcomes with prostate radiotherapy at a single institute in the PSA era (abstr). Int J Radiat Oncol Biol Phys. 2008;69(suppl):1100–9.

    Google Scholar 

  12. Hanks GE, Kramer S, Diamond JJ, et al. Patterns of care outcome survey: national outcome data for six disease sites. Am J Clin Oncol. 1982;5(4):349–53.

    Article  CAS  PubMed  Google Scholar 

  13. Lawton CA, Won M, Pilepich MV, et al. Long-term treatment sequelae following external beam irradiation for adenocarcinoma of the prostate: analysis of RTOG studies 7506 and 7706. IJROBP. 1991;21(4):935–9.

    CAS  Google Scholar 

  14. Ghilezan MJ, Jaffray DA, Siewerdsen JH, et al. Prostate gland motion assessed with cine-magnetic resonance imaging (CINE-MRI). Int J Radiat Oncol Biol Phys. 2005;62(2):406–17.

    Article  PubMed  Google Scholar 

  15. de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. IJROBP. 2005;62:965–73.

    Google Scholar 

  16. Heemsbergen WD, Hoogeman MS, Witte MG, et al. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch Trial of 68 Gy versus 78 Gy. IJROBP. 2007;67:1418–24.

    CAS  Google Scholar 

  17. Balter JM, Sandler HM, Lam K, et al. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. IJROBP. 1995;31(1):113–8.

    CAS  Google Scholar 

  18. Chandra A, Dong L, Huang E. Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol Biol Phys. 2003;56:73–8.

    Article  Google Scholar 

  19. Kitamura K, Shirato H, Seppenwoolde Y, et al. Three-dimensional intrafractional movement of prostate measured during real-time tumor tracking radiotherapy in supine and prone treatment positions. Int J Radiat Oncol Biol Phys. 2002;53:1117–23.

    Article  PubMed  Google Scholar 

  20. Huang E, Dong L, Chandra A, et al. Intrafraction prostate motion during IMRT for prostate cancer. IJROBP. 2002;53(2):261–8.

    Google Scholar 

  21. Su Z, Zhang L, Murphy M, et al. Analysis of prostate patient setup and tracking data: potential intervention strategies. IJROBP. 2010;81(3):880–7.

    Google Scholar 

  22. Tanyi JA, He T, Summers PA, et al. Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. IJROBP. 2010;78(5):1579–85.

    Google Scholar 

  23. Kupelian P, Willoughby T, Mahadevan A, et al. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67:1088–98.

    Article  PubMed  Google Scholar 

  24. Haisen LS, Chetty IJ, Enke CA, et al. Dosimetric consequences of intrafraction prostate motion. IJROBP. 2008;71(3):801–12.

    Google Scholar 

  25. Schallenkamp JM, Herman MG, Kruse JJ, et al. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. IJROBP. 2005;63:800–11.

    Google Scholar 

  26. Khosa R, Nangia S, Chufal KS, et al. Daily online localization using implanted fiducial markers and its impact on planning target volume for carcinoma prostate. J Cancer Res Ther. 2010;6(2):172–8.

    Article  PubMed  Google Scholar 

  27. Skarsgard D, Cadman P, El-Gayed A, et al. Planning target volume margins for prostate radiotherapy using electronic portal imaging and implanted fiducial markers. Radiat Oncol. 2010;10(5):52.

    Article  Google Scholar 

  28. Igdem S, Akpinar H, Alco G, et al. Implantation of fiducial markers for image guidance in prostate radiotherapy: patient-reported toxicity. Br J Radiol. 2009;82(983):941–5.

    Article  CAS  PubMed  Google Scholar 

  29. Moman MR, van der Heide UA, Kotte AN, et al. Long-term experience with transrectal and transperineal implantations of fiducial gold markers in the prostate for position verification in external beam radiotherapy, feasibility, toxicity and quality of life. Radiother Oncol. 2010;96(1):38–42.

    Article  PubMed  Google Scholar 

  30. Ullman KL, Ning H, Susil RC, et al. Intra- and inter-radiation therapist reproducibility of daily isocenter verification using prostatic fiducial markers. Radiat Oncol. 2006;28(1):2.

    Article  Google Scholar 

  31. Langen KM, Zhang Y, Andrews RD, et al. Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. IJROBP. 2005;62:1517–24.

    Google Scholar 

  32. Moseley DJ, White EA, Wiltshire KL, et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. IJROBP. 2007;67:942–53.

    Google Scholar 

  33. Kupelian PA, Langen KM, Willoughby TR, et al. Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol. 2008;18:58–66.

    Article  PubMed  Google Scholar 

  34. Shi W, Li JG, Zlotecki RA, et al. Evaluation of kV cone-beam CT performance for prostate IGRT: a comparison of automatic grey-value alignment to implanted fiducial-marker alignment. Am J Clin Oncol. 2011;34(1):16–21.

    Article  PubMed  Google Scholar 

  35. Serago CF, Chungbin SJ, Buskirk SJ, et al. Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. IJROBP. 2002;53:1130–8.

    Google Scholar 

  36. Artignan X, Smitsmans MH, Lebesque JV, et al. Online ultrasound image guidance for radiotherapy of prostate cancer: impact of image acquisition on prostate displacement. IJROBP. 2004;59:595–601.

    Google Scholar 

  37. Johnson H, Hilts M, Beckham W, et al. 3D ultrasound for prostate localization in radiation therapy: a comparison with implanted fiducial markers. Med Phys. 2008;35(6):2403–13.

    Article  Google Scholar 

  38. Scarbrough TJ, Golden NM, Ting JY, et al. Comparison of ultrasound and implanted seed marker prostate localization methods: implications for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65(2):378–87.

    Article  PubMed  Google Scholar 

  39. Serago CF, Buskirk SJ, Igel TC, et al. Comparison of daily megavoltage electronic portal imaging or kilovoltage imaging with marker seeds to ultrasound imaging or skin marks for prostate localization and treatment positioning in patients with prostate cancer. Int J Radiat Oncol Biol Phys. 2006;65(5):1585–92.

    Article  PubMed  Google Scholar 

  40. Fuller CD, Thomas CR, Schwartz S, et al. Method comparison of ultrasound and kilovoltage x-ray fiducial imaging for prostate radiotherapy targeting. Phys Med Biol. 2006;51(19):4981–93.

    Article  PubMed  Google Scholar 

  41. Ng AK, Kenney LB, Gilbert ES, et al. Secondary malignancies across the age spectrum. Semin Radiat Oncol. 2010;20(1):67–78.

    Article  PubMed  Google Scholar 

  42. Kupelian PA, Langen KM, Willoughby TR, et al. Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol. 2008;18(1):58–66.

    Article  PubMed  Google Scholar 

  43. Fowler JF. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol. 2005;44(3):265–76.

    Article  PubMed  Google Scholar 

  44. START Trialists’ Group, Bentzen SM, Agrawal RK, et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomized trial. Lancet Oncol. 2008;9(4):331–41.

    Article  Google Scholar 

  45. Lloyd-Davies RW, Collins CD, Swan AV. Carcinoma of prostate treated by radical external beam radiotherapy using hypofractionation. Twenty-two years’ experience (1962–1984). Urology. 1990;36(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  46. Dasu A. Is the alpha/beta value for prostate tumours low enough to be safely used in clinical trials. Clin Oncol. 2007;19(5):289–301.

    Article  CAS  Google Scholar 

  47. Madsen BL, Hsi RA, Pham HT, et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007;67(4):1099–105.

    Article  PubMed  Google Scholar 

  48. King CR, Brooks JD, Gill H, et al. Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):877–82.

    Article  PubMed  Google Scholar 

  49. Katz AJ, Santoro M, Ashley R, et al. Stereotactic body radiotherapy for organ-confined prostate cancer. BMC Urol. 2010;10:1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Rava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Rava, P.S., DiPetrillo, T.A. (2013). Image-Guided Radiotherapy and Prostate Cancer. In: Dupuy, D., Fong, Y., McMullen, W. (eds) Image-Guided Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0751-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0751-6_55

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0750-9

  • Online ISBN: 978-1-4419-0751-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics