Skip to main content

MET

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 1857 Accesses

Abstract

The receptor tyrosine kinase MET activates numerous cellular signaling pathways after binding with its ligand, hepatocyte growth factor (HGF). MET is involved in a wide range of biological processes and is critical for tissue homeostasis under physiological conditions. MET is also a known oncogene that is abnormally activated in many human cancers by mutation, protein overexpression or amplification. Furthermore, MET is implicated as a common mechanism of resistance to targeted therapies such as EGFR inhibitors. In this review, we describe the biology of MET, the mechanisms by which it becomes an oncogenic driver, its role as a target in cancer medicine, and emerging biomarkers to select patients for MET-targeted therapy. Pre-clinical and clinical data for anti-MET therapies to date are then summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardelli A, Corso S, Bertotti A, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3:658–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104:20932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beau-Faller M, Ruppert AM, Voegeli AC, et al. MET gene copy number in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naive cohort. J Thorac Oncol. 2008;3:331–9.

    Article  PubMed  Google Scholar 

  • Beilmann M, Odenthal M, Jung W, et al. Neoexpression of the c-met/hepatocyte growth factor-scatter factor receptor gene in activated monocytes. Blood. 1997;90:4450–8.

    CAS  PubMed  Google Scholar 

  • Benkhoucha M, Santiago-Raber ML, Schneiter G, et al. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25 + Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A. 2010;107:6424–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, et al. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376:768–71.

    Article  CAS  PubMed  Google Scholar 

  • Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer. 2006;6:637–45.

    Article  CAS  PubMed  Google Scholar 

  • Camidge DR, Ou S-HI, Shapiro G, et al. Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC). ASCO meeting abstracts 32:8001. 2014.

    Google Scholar 

  • Cappuzzo F, Marchetti A, Skokan M, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27:1667–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choueiri TK, Vaishampayan U, Rosenberg JE, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31:181–6.

    Article  CAS  PubMed  Google Scholar 

  • Christensen JG, Schreck R, Burrows J, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res. 2003;63:7345–55.

    CAS  PubMed  Google Scholar 

  • Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7:504–16.

    Article  CAS  PubMed  Google Scholar 

  • Cooper CS, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311:29–33.

    Article  CAS  PubMed  Google Scholar 

  • Corpechot C, Barbu V, Wendum D, et al. Hepatocyte growth factor and c-Met inhibition by hepatic cell hypoxia: a potential mechanism for liver regeneration failure in experimental cirrhosis. Am J Pathol. 2002;160:613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham D, Al-Batran S-E, Davidenko I, et al. RILOMET-1: an international phase III multicenter, randomized, double-blind, placebo-controlled trial of rilotumumab plus epirubicin, cisplatin, and capecitabine (ECX) as first-line therapy in patients with advanced MET-positive gastric or gastroesophageal junction (G/GEJ) adenocarcinoma. ASCO meeting abstracts 31:TPS4153. 2013.

    Google Scholar 

  • Davidenko I, Iveson T, Donehower R, et al. Updated efficacy, biomarker, and exposure-response data from a phase 2 study of rilotumumab (R) plus epirubicin, cisplatin, and capecitabine (ECX) in gastric or esophagogastric junction cancer. Presented at the European Society for Medical Oncology Congress, 2012.

    Google Scholar 

  • Di Renzo MF, Olivero M, Giacomini A, et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res. 1995;1:147–54.

    PubMed  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  • Foveau B, Ancot F, Leroy C, et al. Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol Biol Cell. 2009;20:2495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.

    Article  CAS  PubMed  Google Scholar 

  • Furlan A, Kherrouche Z, Montagne R, et al. Thirty years of research on met receptor to move a biomarker from bench to bedside. Cancer Res. 2014;74:6737–44.

    Article  CAS  PubMed  Google Scholar 

  • Galimi F, Cottone E, Vigna E, et al. Hepatocyte growth factor is a regulator of monocyte-macrophage function. J Immunol. 2001;166:1241–7.

    Article  CAS  PubMed  Google Scholar 

  • Galvani AP, Cristiani C, Carpinelli P, et al. Suramin modulates cellular levels of hepatocyte growth factor receptor by inducing shedding of a soluble form. Biochem Pharmacol. 1995;50:959–66.

    Article  CAS  PubMed  Google Scholar 

  • Huff JL, Jelinek MA, Borgman CA, et al. The protooncogene c-sea encodes a transmembrane protein-tyrosine kinase related to the Met/hepatocyte growth factor/scatter factor receptor. Proc Natl Acad Sci U S A. 1993;90:6140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janjigian YY, Tang LH, Coit DG, et al. MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomarkers Prev. 2011;20:1021–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaida K, Matsumoto K, Shimazu H, et al. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc Natl Acad Sci U S A. 1994;91:4357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima Y, Ide T, Ohtsuka T, et al. Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Sci. 2008;99:1341–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee HE, Kim MA, Lee HS, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107:325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennerz JK, Kwak EL, Ackerman A, et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol. 2011;29:4803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Jia Y, Stoopler M, et al. Next generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. in press, 2015 Jul 27. pii: JCO.2015.62.0674. [Epub ahead of print].

    Google Scholar 

  • Ma PC, Tretiakova MS, MacKinnon AC, et al. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer. 2008;47:1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther. 2014;142:316–38.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer. 2006;119:477–83.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mizuno S, Matsumoto K, et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest. 2000;106:1511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okunishi K, Dohi M, Nakagome K, et al. A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol. 2005;175:4745–53.

    Article  CAS  PubMed  Google Scholar 

  • Oliner KS, Tang R, Anderson A, et al Evaluation of MET pathway biomarkers in a phase II study of rilotumumab (R, AMG 102) or placebo (P) in combination with epirubicin, cisplatin, and capecitabine (ECX) in patients (pts) with locally advanced or metastatic gastric (G) or esophagogastric junction (EGJ) cancer. ASCO meeting abstracts 30:4005. 2012.

    Google Scholar 

  • Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik PK, Drilon A, Yu H, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3:347–61.

    Article  PubMed  Google Scholar 

  • Peschard P, Fournier TM, Lamorte L, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8:995–1004.

    Article  CAS  PubMed  Google Scholar 

  • Ronsin C, Muscatelli F, Mattei MG, et al. A novel putative receptor protein tyrosine kinase of the met family. Oncogene. 1993;8:1195–202.

    CAS  PubMed  Google Scholar 

  • Santoro A, Rimassa L, Borbath I, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63.

    Article  CAS  PubMed  Google Scholar 

  • Sawada K, Radjabi AR, Shinomiya N, et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res. 2007;67:1670–9.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C, Bladt F, Goedecke S, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16:68–73.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18:2343–50.

    Article  CAS  PubMed  Google Scholar 

  • Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011a;3:75ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sequist LV, von Pawel J, Garmey EG, et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol. 2011b;29:3307–15.

    Article  CAS  PubMed  Google Scholar 

  • Smolen GA, Sordella R, Muir B, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006;103:2316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenberg E, Meyer D, Weidner KM, et al. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993;123:223–35.

    Article  CAS  PubMed  Google Scholar 

  • Spigel DR, Ervin TJ, Ramlau RA, et al. Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31:4105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spigel DR, Edelman MJ, O’Byrne K, et al Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: results from the pivotal phase III randomized, multicenter, placebo-controlled METLung (OAM4971g) global trial. ASCO meeting abstracts 32:8000. 2014.

    Google Scholar 

  • Szerlip NJ, Pedraza A, Chakravarty D, et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A. 2012;109:3041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi H, Bilchik A, Saha S, et al. c-MET expression level in primary colon cancer: a predictor of tumor invasion and lymph node metastases. Clin Cancer Res. 2003;9:1480–8.

    CAS  PubMed  Google Scholar 

  • Tang Z, Du R, Jiang S, et al. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer. 2008;99:911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Google Scholar 

  • Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11:834–48.

    Article  CAS  PubMed  Google Scholar 

  • Tsubouchi H, Niitani Y, Hirono S, et al. Levels of the human hepatocyte growth factor in serum of patients with various liver diseases determined by an enzyme-linked immunosorbent assay. Hepatology. 1991;13:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17:77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara Y, Minowa O, Mori C, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373:702–5.

    Article  CAS  PubMed  Google Scholar 

  • van der Voort R, Taher TE, Keehnen RM, et al. Paracrine regulation of germinal center B cell adhesion through the c-met-hepatocyte growth factor/scatter factor pathway. J Exp Med. 1997;185:2121–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng ZS, Weiser MR, Kuntz E, et al. c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett. 2008;265:258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsey Asmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Asmar, R., Halmos, B. (2017). MET. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_87

Download citation

Publish with us

Policies and ethics