Skip to main content

VEGF A

  • Reference work entry
  • First Online:
Cancer Therapeutic Targets
  • 1860 Accesses

Abstract

VEGF-A is the founding member of the VPF/VEGF family of proteins that also includes VEGFs B, C and D as well as PlGF (placenta growth factor) and a related viral protein, VEGF-E (Dvorak, J Clin Oncol 20:4368–4380, 2002; Am J Pathol 162:1747–1757, 2003; Ferrara et al., Nat Med 9:669–676, 2003; Mukhopadhyay et al., Vascular permeability factor/vascular endothelial growth factor and its receptors: evolving paradigms in vascular biology and cell signaling. In: Aird W (ed) The endothelium: a comprehensive reference. Cambridge University Press, Cambridge, 2007; Bry et al., Circulation 122:1725–1733, 2010; Hagberg et al., Nature 464:917–921, 2010; Shibuya and Claesson-Welsh, Exp Cell Res 312:549–560, 2006; Veikkola and Alitalo, Semin Cancer Biol 9:211–220, 1999). VEGF-A, the subject of this chapter, has critical roles in vasculogenesis and pathological and physiological angiogenesis, acting through receptors (VEGFR-1, VEGFR-2 and neuropilin) that are expressed on vascular endothelium as well as on certain other cell types (Fig. 1) (Shibuya and Claesson-Welsh, Exp Cell Res 312:549–560, 2006; Veikkola and Alitalo, Semin Cancer Biol 9:211–220, 1999; Bielenberg et al., Exp Cell Res 312:584–593, 2006). The product of a single gene, VEGF-A is alternatively spliced to form several proteins of different lengths, properties and functions. Originally discovered as a potent vascular permeabilizing factor (VPF) (Senger et al., Science 219:983–985, 1983; Dvorak et al., J Immunol 122:166–174, 1979), VEGF-A is also an endothelial cell motogen and mitogen, profoundly alters the pattern of endothelial cell gene expression, and protects endothelial cells from apoptosis (Benjamin et al., J Clin Invest 103:159–165, 1999) and senescence (Dvorak, Am J Pathol 162:1747–1757, 2003). Recently, VEGF-A has been found to have additional critical roles in hematopoiesis and in expansion and differentiation of bone marrow endothelial cell precursors (Seandel et al., Cancer Cell 13:181–183, 2008), in maintenance of the nervous system (Ruiz de Almodovar et al., Physiol Rev 89:607–648, 2009), and in development. Mice lacking even one copy of the VEGF-A gene are embryonic lethal (Ferrara et al., Nat Med 9:669–676, 2003; Carmeliet, Nat Med 9:653–660, 2003). VEGFs C and D are essential for development of the lymphatic system (Veikkola and Alitalo, Semin Cancer Biol 9:211–220, 1999), VEGF-B has a role in the development of coronary arteries and in fatty acid metabolism (Bry et al., Circulation 122:1725–1733, 2010; Hagberg et al., Nature 464:917–921, 2010), and PlGF has important roles in pathological angiogenesis (Carmeliet, Nat Med 9:653–660, 2003; Luttun et al., Nat Med 8:831–840, 2002). VEGF-A also induces abnormal lymphangiogenesis (Nagy et al., J Exp Med 196:1497–1506, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103:159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan HS, van den Akker NM, Qiu Y, et al. The alternatively spliced anti-angiogenic family of VEGF isoforms VEGFxxxb in human kidney development. Nephron Physiol. 2008;110:p57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M. Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res. 2006;312:584–93.

    Article  CAS  PubMed  Google Scholar 

  • Bry M, Kivela R, Holopainen T, et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation. 2010;122:1725–33.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 2003;162:1747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak HF, Orenstein NS, Carvalho AC, et al. Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol. 1979;122:166–74.

    CAS  PubMed  Google Scholar 

  • Dvorak HN, Senger DR, Dvorak AM, Harvey VS, McDonagh J. Regulation of extravascular coagulation by microvascular permeability. Science. 1985;227:1059–61.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol. 1996;59:100–15.

    CAS  PubMed  Google Scholar 

  • Eichmann A, Le Noble F, Autiero M, Carmeliet P. Guidance of vascular and neural network formation. Curr Opin Neurobiol. 2005;15:108–15.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21:687–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg CE, Falkevall A, Wang X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature. 2010;464:917–21.

    Article  CAS  PubMed  Google Scholar 

  • Heer K, Kumar H, Read JR, Fox JN, Monson JR, Kerin MJ. Serum vascular endothelial growth factor in breast cancer: its relation with cancer type and estrogen receptor status. Clin Cancer Res. 2001;7:3491–4.

    CAS  PubMed  Google Scholar 

  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK. Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer. 2008;8:309–16.

    Article  CAS  PubMed  Google Scholar 

  • LeCouter J, Moritz DR, Li B, et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science. 2003;299:890–3.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005;169:681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med. 2002;8:831–40.

    CAS  PubMed  Google Scholar 

  • Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood. 2001;98:1904–13.

    Article  CAS  PubMed  Google Scholar 

  • Medinger M, Fischer N, Tzankov A. Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol. 2010;2010:729725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay D, Bhattacharya R, Hughes D. Vascular permeability factor/vascular endothelial growth factor and its receptors: evolving paradigms in vascular biology and cell signaling. In: Aird W, editor. The endothelium: a comprehensive reference. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  • Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med. 2002;196:1497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Dvorak HF, Dvorak AM. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol Mech Dis. 2007;2:251–75.

    Article  CAS  Google Scholar 

  • Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 2009;100:865–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF. Heterogeneity of the tumor vasculature. Semin Thromb Hemost. 2010;36:321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Dvorak AM, Dvorak HF. Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med. 2012;2:a006544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulaki V, Mitsiades CS, McMullan C, et al. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab. 2003;88:5392–8.

    Article  CAS  PubMed  Google Scholar 

  • Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995;108(Pt 6):2369–79.

    CAS  PubMed  Google Scholar 

  • Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev. 2009;89:607–48.

    Article  CAS  PubMed  Google Scholar 

  • Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  CAS  PubMed  Google Scholar 

  • Seandel M, Butler J, Lyden D, Rafii S. A catalytic role for proangiogenic marrow-derived cells in tumor neovascularization. Cancer Cell. 2008;13:181–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47–71.

    Article  CAS  PubMed  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:549–60.

    Article  CAS  PubMed  Google Scholar 

  • Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012;72:1909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998;92:735–45.

    Article  CAS  PubMed  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest. 2002;109:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999;9:211–20.

    Article  CAS  PubMed  Google Scholar 

  • Wirzenius M, Tammela T, Uutela M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204:1431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–92.

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A. 1996;93:14765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Dvorak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Dvorak, H. (2017). VEGF A. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0717-2_2

Download citation

Publish with us

Policies and ethics