Skip to main content

Advanced Materials for Fuel Cells

  • Reference work entry
Handbook of Sustainable Engineering
  • 5902 Accesses

Abstract

Present status and future prospect in the fuel cell field were introduced in this chapter. To explain the important future prospect in the materials science of fuel cells, the authors focused on the materials science in the solid oxide fuel cell field after briefly summarizing present status of research and development in the fuel cell field. Also the authors reintroduced the research results to highlight the important role of the ultimate analysis of microstructure, simulation for a reasonable conclusion of microanalysis, and the processing route design based on microanalysis. The usefulness of the combined approach of microanalysis, simulation, and the processing route design is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.C. Dupuis, Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques. Prog. Mater. Sci. 56, 289–327 (2011)

    Article  Google Scholar 

  • V.A. Grinbergz, A.M. Skundin, Microfuel cells: modern state and future development (review). Russ. J. Electrochem. 46(9), 963–978 (2010)

    Article  Google Scholar 

  • I. Ivanov, T. Vidaković-Koch, K. Sundmacher, Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3, 803–846 (2010)

    Article  Google Scholar 

  • A.J. Jacobson, Materials for solid oxide fuel cells. Chem. Mater. 22, 660–674 (2010)

    Article  Google Scholar 

  • F. Li, T. Ohkubo, Y.M. Chen, M. Kodzuka, F. Ye, D.R. Ou, T. Mori, K. Hono, Laser-assisted three-dimensional atom probe analysis of dopant distribution in Gd-doped CeO2. Scr. Mater. 63(3), 332–335 (2010)

    Article  Google Scholar 

  • Z.P. Li, T. Mori, G. Auchterlonie, J. Zou, J. Drennan, Direct evidence of dopant segregation in Gd-doped ceria. Appl. Phys. Lett. 98(9) (2011a). article number 093104

    Google Scholar 

  • Z.P. Li, T. Mori, G. Auchterlonie, Y. Guo, J. Zou, J. Drennan, M. Miyayama, Mutual diffusion and microstructure evoluation at the electrolyte-anode interface in intermedaite temperature solid oxide fuel cell. J. Phys. Chem. C 115(14), 6877–6885 (2011b)

    Article  Google Scholar 

  • Z.P. Li, T. Mori, G. Auchterlonie, J. Zou, J. Drennan, Superstructure formation and variation in Ni-GDC cermet anodes in SOFC. Phys. Chem. Chem. Phys. 13(20), 9685–9690 (2011c)

    Article  Google Scholar 

  • Z.P. Li, T. Mori, G. Auchterlonie, J. Zou, J. Drennan, Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs. J. Solid State Chem. 184(9), 2458–2461 (2011d)

    Article  Google Scholar 

  • Z.P. Li, T. Mori, G. Auchterlonie, J. Zou, J. Drennan, Mutual diffusion occurring at the interface between La0. 6Sr0. 4Co0. 8Fe0. 2O3 cathode and gd-doped ceria electrolyte during IT-SOFC cell preparation. ACS Appl. Mater. Interfaces 3(7), 2772–2778 (2011e)

    Article  Google Scholar 

  • Z.P. Li, T. Mori, F. Ye, D.R. Ou, J. Zou, J. Drennan, Structural phase transformation through defect cluster growth in Gd-doped ceria. Phys. Rev. B 84, 1–5 (2011f). article number: 180201(R)

    Google Scholar 

  • G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377(1–2), 1–35 (2011)

    Article  Google Scholar 

  • M. Miller, A. Bazylak, A review of polymer electrolyte membrane fuel cell stack testing. J. Power Sources 196(2), 601–613 (2011)

    Article  Google Scholar 

  • T. Mori, J. Drennan, Y. Wang, G. Auchterlonie, J.G. Li, A. Yago, Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system. Sci. Technol. Adv. Mater. 4(3), 213–220 (2003)

    Article  Google Scholar 

  • T. Mori, T. Kobayashi, Y. Wang, J. Drennan, T. Nishimura, J.G. Li, H. Kobayashi, Synthesis and characterization of nanohetero-structured Dy doped CeO2 solid electrolytes using combination process of spark plasma sintering and conventional sintering. J. Am. Ceram. Soc. 88(7), 1981–1984 (2005)

    Article  Google Scholar 

  • T. Mori, J. Drennan, D.R. Ou, F. Ye, Design of high quality doped CeO2 solid electrolytes with nano-hetero structure. Int. J. Nucl. Res. (NUKLEONIKA) 51, S11–S18 (2006)

    Google Scholar 

  • T. Mori, R. Buchanan, D.R. Ou, F. Ye, T. Kobayashi, J.D. Kim, J. Zou, J. Drennan, Design of nano-structured ceria based solid electrolytes for development of IT-SOFC. J. Solid State Electrochem. 12(7–8), 841–849 (2008)

    Article  Google Scholar 

  • T. Mori, D.R. Ou, F. Ye, J. Zou, J. Drennan, A.N. Cormack, Nano-structure design of doped ceria solid electrolytes for intermediate temperature operation of solid oxide fuel cell. Trans. Mater. Res. Soc. Jpn. 35(3), 431–441 (2010)

    Google Scholar 

  • V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169(2), 221–238 (2007)

    Article  Google Scholar 

  • D.R. Ou, T. Mori, F. Ye, M. Takahashi, J. Zou, J. Drennan, Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: dopant concentration and grain size dependences. Acta Mater. 54(14), 3737–3746 (2006)

    Article  Google Scholar 

  • D.R. Ou, T. Mori, F. Ye, J. Zou, J. Drennan, Evidence of intragranular segregation of dopant cations in heavily yttrium-doped ceria. Electrochem. Solid-State Lett. 10(1), 1–3 (2007)

    Article  Google Scholar 

  • K. Scott, W. Taama, J. Cruickshank, Performance and modeling of a direct methanol solid polymer electrolyte fuel cell. J. Power Sources 65(1–2), 159–171 (1997)

    Article  Google Scholar 

  • A. Serov, C. Kwak, Recent achievements in direct ethylene glycol fuel cells. Appl. Catal. B Environ. 97, 1–12 (2010)

    Article  Google Scholar 

  • B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2000)

    Article  Google Scholar 

  • C. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem. 14, 1125–1144 (2010)

    Article  Google Scholar 

  • Y. Wang, H. Kageyama, T. Mori, H. Yoshikawa, J. Drennan, Local structures around Y and Ce cations in10 mol% Y2O3 doped ceria ceramics by XAFS spectroscopy. Solid State Ion. 177(19–25), 1681–1685 (2006)

    Article  Google Scholar 

  • F. Ye, T. Mori, D.R. Ou, J. Zou, G. Auchterlonie, J. Drennan, Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria. Solid State Ion. 179(21–26), 827–831 (2008)

    Article  Google Scholar 

  • F. Ye, T. Mori, D.R. Ou, J. Zou, J. Drennan, S. Nakayama, M. Miyayama, Effect of nickel diffusion on the microstructure of Gd-doped ceria (GDC) electrolyte film supported by Ni-GDC cermet anode. Solid State Ion. 181(13–14), 646–652 (2010)

    Article  Google Scholar 

  • E.H. Yu, U. Krewer, K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3, 1499–1528 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Alastair N. Cormack (Alfred University, USA) for his kind advice in our simulation work. Also we appreciate the fruitful collaborative works to Professor Fei Ye (Dalian University of Technology, China), Professor Ding Rong Ou (Chinese Academy of Sciences, China), Professor Jin Zou (The Queensland University, Australia), Dr. Graeme Auchterlonie (The Queensland University, Australia), and Dr. Zhipeng Li (National Institute for Ma terials Science, Japan).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Mori, T., Drennan, J. (2013). Advanced Materials for Fuel Cells. In: Kauffman, J., Lee, KM. (eds) Handbook of Sustainable Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8939-8_100

Download citation

Publish with us

Policies and ethics