Skip to main content

CRISPR-Cas9-Mediated Bioluminescent Tagging of Endogenous Proteins by Fluorescent Protein-Assisted Cell Sorting

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2779))

  • 696 Accesses

Abstract

Oncogenic fusion genes are attractive therapeutic targets because of their tumor-specific expression and central “driver” roles in various human cancers. However, oncogenic fusions involving transcription factors such as PAX3-FOXO1 in alveolar fusion gene-positive rhabdomyosarcoma (FP-RMS) have been difficult to inhibit due to the apparent lack of tractable drug-like binding sites comparable to that recognized by Gleevec (imatinib mesylate) on the BCR-ABL1 tyrosine kinase fusion protein. Toward the identification of novel small molecules that selectively target PAX3-FOXO1, we used CRISPR-Cas9-mediated knock-in to append the pro-luminescent HiBiT tag onto the carboxy terminus of the endogenous PAX3-FOXO1 fusion protein in two human FP-RMS cell lines (RH4 and SCMC). HiBiT is an 11-amino acid peptide derived from the NanoLuc luciferase that produces a luminescence signal which is ~100-fold brighter than firefly or Renilla luciferases through high-affinity binding to a complementary NanoLuc peptide fragment called LgBiT. To facilitate single-cell clonal isolation of knock-ins, the homology-directed repair template encoding HiBiT was followed by a P2A self-cleaving peptide for coexpression of an mCherry fluorescent protein as a fluorescence-activated cell sorter (FACS)-selectable marker. HiBiT tagging thus allows highly sensitive luminescence detection of endogenous PAX3-FOXO1 levels permitting quantitative high-throughput screening of large compound libraries for the discovery of PAX3-FOXO1 inhibitors and degraders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, Ruhen O, Shern JF, Khan J, Kovach AR, Lupo PJ, Gatz SA, Schafer BW, Volchenboum S, Minard-Colin V, Koscielniak E, Hawkins DS, Bisogno G, Sparber-Sauer M, Venkatramani R, Merks JHM, Shipley J (2022) Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: a consensus view from European paediatric Soft tissue sarcoma Study Group, Children’s Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer 172:367–386. https://doi.org/10.1016/j.ejca.2022.05.036

    Article  CAS  PubMed  Google Scholar 

  2. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS, Rovera G, Barr FG (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5(3):230–235

    Article  CAS  PubMed  Google Scholar 

  3. Heske CM, Mascarenhas L (2021) Relapsed rhabdomyosarcoma. J. Clin Med 10(4):804. https://doi.org/10.3390/jcm10040804

    Article  CAS  Google Scholar 

  4. Ebauer M, Wachtel M, Niggli FK, Schafer BW (2007) Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26(51):7267–7281. https://doi.org/10.1038/sj.onc.1210525

    Article  CAS  PubMed  Google Scholar 

  5. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, Ambrogio L, Auclair D, Wang J, Song YK, Tolman C, Hurd L, Liao H, Zhang S, Bogen D, Brohl AS, Sindiri S, Catchpoole D, Badgett T, Getz G, Mora J, Anderson JR, Skapek SX, Barr FG, Meyerson M, Hawkins DS, Khan J (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4(2):216–231. https://doi.org/10.1158/2159-8290.CD-13-0639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bohm M, Wachtel M, Marques JG, Streiff N, Laubscher D, Nanni P, Mamchaoui K, Santoro R, Schafer BW (2016) Helicase CHD4 is an epigenetic coregulator of PAX3-FOXO1 in alveolar rhabdomyosarcoma. J Clin Invest 126(11):4237–4249. https://doi.org/10.1172/JCI85057

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gryder BE, Yohe ME, Chou HC, Zhang X, Marques J, Wachtel M, Schaefer B, Sen N, Song Y, Gualtieri A, Pomella S, Rota R, Cleveland A, Wen X, Sindiri S, Wei JS, Barr FG, Das S, Andresson T, Guha R, Lal-Nag M, Ferrer M, Shern JF, Zhao K, Thomas CJ, Khan J (2017) PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov 7(8):884–899. https://doi.org/10.1158/2159-8290.CD-16-1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gryder BE, Wu L, Woldemichael GM, Pomella S, Quinn TR, Park PMC, Cleveland A, Stanton BZ, Song Y, Rota R, Wiest O, Yohe ME, Shern JF, Qi J, Khan J (2019) Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat Commun 10(1):3004. https://doi.org/10.1038/s41467-019-11046-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bharathy N, Berlow NE, Wang E, Abraham J, Settelmeyer TP, Hooper JE, Svalina MN, Ishikawa Y, Zientek K, Bajwa Z, Goros MW, Hernandez BS, Wolff JE, Rudek MA, Xu L, Anders NM, Pal R, Harrold AP, Davies AM, Ashok A, Bushby D, Mancini M, Noakes C, Goodwin NC, Ordentlich P, Keck J, Hawkins DS, Rudzinski ER, Chatterjee B, Bachinger HP, Barr FG, Liddle J, Garcia BA, Mansoor A, Perkins TJ, Vakoc CR, Michalek JE, Keller C (2018) The HDAC3-SMARCA4-miR-27a axis promotes expression of the PAX3:FOXO1 fusion oncogene in rhabdomyosarcoma. Sci Signal 11(557). https://doi.org/10.1126/scisignal.aau7632

  10. Wachtel M, Schafer BW (2018) PAX3-FOXO1: zooming in on an “undruggable” target. Semin Cancer Biol 50:115–123. https://doi.org/10.1016/j.semcancer.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen TH, Barr FG (2018) Therapeutic approaches targeting PAX3-FOXO1 and its regulatory and transcriptional pathways in rhabdomyosarcoma. Molecules 23:2798. https://doi.org/10.3390/molecules23112798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60(5):523–533. https://doi.org/10.1007/s00253-002-1158-6

    Article  CAS  PubMed  Google Scholar 

  13. Oh-Hashi K, Furuta E, Fujimura K, Hirata Y (2017) Application of a novel HiBiT peptide tag for monitoring ATF4 protein expression in Neuro2a cells. Biochem Biophys Rep 12:40–45. https://doi.org/10.1016/j.bbrep.2017.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS, Hurst R, Hall MP, Encell LP, Binkowski BF, Wood KV (2018) CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem Biol 13(2):467–474. https://doi.org/10.1021/acschembio.7b00549

    Article  CAS  PubMed  Google Scholar 

  15. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857. https://doi.org/10.1021/cb3002478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, Butler BL, Binkowski BF, Machleidt T, Kirkland TA, Wood MG, Eggers CT, Encell LP, Wood KV (2016) NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem Biol 11(2):400–408. https://doi.org/10.1021/acschembio.5b00753

    Article  CAS  PubMed  Google Scholar 

  17. Frascella E, Lenzini E, Schafer BW, Brecevic L, Dorigo E, Toffolatti L, Nanni P, De Giovanni C, Rosolen A (2000) Concomitant amplification and expression of PAX7-FKHR and MYCN in a human rhabdomyosarcoma cell line carrying a cryptic t(1;13)(p36;q14). Cancer Genet Cytogen 121(2):139–145. https://doi.org/10.1016/s0165-4608(00)00258-2

    Article  CAS  Google Scholar 

  18. Nishimura R, Takita J, Sato-Otsubo A, Kato M, Koh K, Hanada R, Tanaka Y, Kato K, Maeda D, Fukayama M, Sanada M, Hayashi Y, Ogawa S (2013) Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci 104(7):856–864. https://doi.org/10.1111/cas.12173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinson AR, Jones R, Crose LE, Belyea BC, Barr FG, Linardic CM (2013) Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls. Front Oncol 3:183. https://doi.org/10.3389/fonc.2013.00183

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6(4):e18556. https://doi.org/10.1371/journal.pone.0018556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  PubMed  Google Scholar 

  22. Hawley TS, Hawley RG, Telford WG (2017) Fluorescent proteins for flow cytometry. Curr Protoc Cytom 80:9 12 11–19 12 20. https://doi.org/10.1002/cpcy.17

    Article  Google Scholar 

  23. Lin GL, Wilson KM, Ceribelli M, Stanton BZ, Woo PJ, Kreimer S, Qin EY, Zhang X, Lennon J, Nagaraja S, Morris PJ, Quezada M, Gillespie SM, Duveau DY, Michalowski AM, Shinn P, Guha R, Ferrer M, Klumpp-Thomas C, Michael S, McKnight C, Minhas P, Itkin Z, Raabe EH, Chen L, Ghanem R, Geraghty AC, Ni L, Andreasson KI, Vitanza NA, Warren KE, Thomas CJ, Monje M (2019) Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci Transl Med 11:eaaw0064. https://doi.org/10.1126/scitranslmed.aaw0064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim YY, Hawley RG, Churiwal M, Hawley TS, Evans CN, Chari R, Milewski D, Sinniah R, Song YK, Chou H, Wen X, Pang Y, Wu J, Thomas CJ, Wei JS, Ceribelli M, Khan J (2023) Endogenous HiBiT-tagging of PAX3-FOXO1 identifies potent suppressors of PAX3-FOXO1 protein levels by high-throughput screening. Cancer Res 83:3538. https://doi.org/10.1158/1538-7445.AM2023-3538

    Article  Google Scholar 

  25. Vicente-Garcia C, Villarejo-Balcells B, Irastorza-Azcarate I, Naranjo S, Acemel RD, Tena JJ, Rigby PWJ, Devos DP, Gomez-Skarmeta JL, Carvajal JJ (2017) Regulatory landscape fusion in rhabdomyosarcoma through interactions between the PAX3 promoter and FOXO1 regulatory elements. Genome Biol 18(1):106. https://doi.org/10.1186/s13059-017-1225-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Williamson D, Lu YJ, Gordon T, Sciot R, Kelsey A, Fisher C, Poremba C, Anderson J, Pritchard-Jones K, Shipley J (2005) Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol 23(4):880–888. https://doi.org/10.1200/JCO.2005.11.078

    Article  CAS  PubMed  Google Scholar 

  27. Tonelli R, McIntyre A, Camerin C, Walters ZS, Di Leo K, Selfe J, Purgato S, Missiaglia E, Tortori A, Renshaw J, Astolfi A, Taylor KR, Serravalle S, Bishop R, Nanni C, Valentijn LJ, Faccini A, Leuschner I, Formica S, Reis-Filho JS, Ambrosini V, Thway K, Franzoni M, Summersgill B, Marchelli R, Hrelia P, Cantelli-Forti G, Fanti S, Corradini R, Pession A, Shipley J (2012) Antitumor activity of sustained N-myc reduction in rhabdomyosarcomas and transcriptional block by antigene therapy. Clin Cancer Res 18(3):796–807. https://doi.org/10.1158/1078-0432.CCR-11-1981

    Article  CAS  PubMed  Google Scholar 

  28. Hawley TS, Burns BF, Hawley RG (1991) Leukocytosis in mice following long-term reconstitution with genetically-modified bone marrow cells constitutively expressing interleukin 1α or interleukin 6. Leuk Res 15(8):659–673. https://doi.org/10.1016/0145-2126(91)90068-5

    Article  CAS  PubMed  Google Scholar 

  29. Nassar LR, Barber GP, Benet-Pages A, Casper J, Clawson H, Diekhans M, Fischer C, Gonzalez JN, Hinrichs AS, Lee BT, Lee CM, Muthuraman P, Nguy B, Pereira T, Nejad P, Perez G, Raney BJ, Schmelter D, Speir ML, Wick BD, Zweig AS, Haussler D, Kuhn RM, Haeussler M, Kent WJ (2023) The UCSC Genome Browser database: 2023 update. Nucleic Acids Res 51(D1):D1188–D1195. https://doi.org/10.1093/nar/gkac1072

    Article  CAS  PubMed  Google Scholar 

  30. Chari R, Yeo NC, Chavez A, Church GM (2017) sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6 (5):902-904:902. https://doi.org/10.1021/acssynbio.6b00343

  31. Gooden AA, Evans CN, Sheets TP, Clapp ME, Chari R (2021) dbGuide: a database of functionally validated guide RNAs for genome editing in human and mouse cells. Nucleic Acids Res 49(D1):D871–D876. https://doi.org/10.1093/nar/gkaa848

  32. Ruf B, Catania VV, Wabitsch S, Ma C, Diggs LP, Zhang Q, Heinrich B, Subramanyam V, Cui LL, Pouzolles M, Evans CN, Chari R, Sakai S, Oh S, Barry CE 3rd, Barber DL, Greten TF (2021) Activating mucosal-associated invariant T cells induces a broad antitumor response. Cancer Immunol Res 9(9):1024–1034. https://doi.org/10.1158/2326-6066.CIR-20-0925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874. https://doi.org/10.1038/nbt.3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12(4):828–863. https://doi.org/10.1038/nprot.2017.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwinn MK, Steffen LS, Zimmerman K, Wood KV, Machleidt T (2020) A simple and scalable strategy for analysis of endogenous protein dynamics. Sci Rep 10(1):8953. https://doi.org/10.1038/s41598-020-65832-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui Y, Xu J, Cheng M, Liao X, Peng S (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10(2):455–465. https://doi.org/10.1007/s12539-018-0298-z

    Article  CAS  PubMed  Google Scholar 

  38. Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46(W1):W242–W245. https://doi.org/10.1093/nar/gky354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7(1):379–387. https://doi.org/10.1128/mcb.7.1.379-387.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorman CM, Gies D, McCray G, Huang M (1989) The human cytomegalovirus major immediate early promoter can be trans-activated by adenovirus early proteins. Virology 171(2):377–385. https://doi.org/10.1016/0042-6822(89)90605-3

    Article  CAS  PubMed  Google Scholar 

  41. Ramezani A, Hawley RG (2002) Generation of HIV-1-based lentiviral vector particles. Curr Protoc Mol Biol 16:Unit 16 22. https://doi.org/10.1002/0471142727.mb1622s60

    Article  Google Scholar 

  42. Riz I, Hawley TS, Hawley RG (2011) Lentiviral fluorescent protein expression vectors for biotinylation proteomics. Methods Mol Biol 699:431–447. https://doi.org/10.1007/978-1-61737-950-5_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Doudna JA, Mali P (2016) CRISPR-Cas: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor/New York

    Google Scholar 

  45. Weber M, Moller K, Welzeck M, Schorr J (1995) Short technical reports. Effects of lipopolysaccharide on transfection efficiency in eukaryotic cells. BioTechniques 19(6):930–940

    CAS  PubMed  Google Scholar 

  46. Butash KA, Natarajan P, Young A, Fox DK (2000) Reexamination of the effect of endotoxin on cell proliferation and transfection efficiency. BioTechniques 29(3):610–614, 616, 618–619. https://doi.org/10.2144/00293rr04

    Article  Google Scholar 

  47. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  48. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548. https://doi.org/10.1038/nbt.3198

    Article  CAS  PubMed  Google Scholar 

  49. Killian T, Dickopf S, Haas AK, Kirstenpfad C, Mayer K, Brinkmann U (2017) Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Sci Rep 7(1):15480. https://doi.org/10.1038/s41598-017-15206-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 13(6):1465–1487. https://doi.org/10.1038/nprot.2018.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

R.G.H. is a National Institutes of Health (NIH) Research Collaborator. This work was initiated during a sabbatical as a Special Volunteer with Javed Khan, Deputy Director, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD. We are thankful to him for continued support. The authors thank Raj Chari and Christine Evans, Genome Modification Core, Frederick National Laboratory for Cancer Research for designing and providing CRISPR plasmids. The authors are grateful to Silvia Pomella and Young Song for assistance with western blotting and RNA-seq experiments, respectively. The authors also appreciate Craig Thomas and Michele Ceribelli, Division of Preclinical Innovation, Chemistry Technologies, National Center for Advancing Translational Sciences, NIH for their willingness to establish and perform high-throughput drug screens of RH4.P3F-HmC 1A9 and SCMC.P3F-HmC 3C4 cells using the Nano-Glo HiBiT Lytic Detection System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Hawley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hawley, R.G., Hawley, T.S. (2024). CRISPR-Cas9-Mediated Bioluminescent Tagging of Endogenous Proteins by Fluorescent Protein-Assisted Cell Sorting. In: Hawley, T.S., Hawley, R.G. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 2779. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3738-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3738-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3737-1

  • Online ISBN: 978-1-0716-3738-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics