Skip to main content

Hydrodynamic Transfection of Hepatocytes for the Study of Hepatocellular Carcinogenesis

  • Protocol
  • First Online:
Liver Carcinogenesis

Abstract

Hydrodynamic tail vein injection (HTVi), also called hydrodynamic gene transfer (HGT), is attracting increasing interest for modeling hepatic carcinogenesis. This highly versatile approach reproducibly provides efficient in vivo transfection of hepatocytes with naked DNA. Here, we give an in-depth description of the injection procedure, which is key for the success of the method. HTVi requires the injection of a large volume of a solution containing plasmids into the tail vein of the mouse. The transient right heart overload created by the injection forces the blood to flow back into the hepatic veins, enlarging the endothelial fenestrae and permeabilizing a fraction of hepatocytes for a few seconds. This results in the uptake of plasmids by the permeabilized hepatocytes, giving rise to their in vivo transfection. Including the Sleeping Beauty transposon system among the injected plasmids leads to the stable transfection of a subset of hepatocytes. HTVi is a powerful technique which enables numerous applications in liver cancer biology, such as a study of oncogene cooperation, of tumor heterogeneity, and interaction with the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Llovet JM, Kelley RK, Villanueva A et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primer 7:6

    Article  Google Scholar 

  2. Newell P, Villanueva A, Friedman SL et al (2008) Experimental models of hepatocellular carcinoma. J Hepatol 48:858–879

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  PubMed  Google Scholar 

  4. Zhang G, Vargo D, Budker V et al (1997) Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers. Hum Gene Ther 8:1763–1772

    Article  PubMed  Google Scholar 

  5. Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10:1735–1737

    Article  PubMed  Google Scholar 

  6. Ohlfest JR, Frandsen JL, Fritz S et al (2005) Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 105:2691–2698

    Article  PubMed  Google Scholar 

  7. Carlson CM, Frandsen JL, Kirchhof N et al (2005) Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc Natl Acad Sci U S A 102:17059–17064

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ju H-L, Han K-H, Lee JD et al (2016) Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy: transgenic mouse models generated by hydrodynamic transfection. Int J Cancer 138:1601–1608

    Article  PubMed  Google Scholar 

  9. Molina-Sánchez P, Ruiz De Galarreta M, Yao MA et al (2020) Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepatocellular carcinoma. Gastroenterology 159:2203–2220.e14

    Article  PubMed  Google Scholar 

  10. Yuen VW-H, Chiu DK-C, Law C-T et al (2023) Using mouse liver cancer models based on somatic genome editing to predict immune checkpoint inhibitor responses. J Hepatol 78:376–389

    Article  PubMed  Google Scholar 

  11. Mátés L, Chuah MKL, Belay E et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761

    Article  PubMed  Google Scholar 

  12. Chattopadhyay M, Jenkins EC, Lechuga-Vieco AV et al (2022) The portrait of liver cancer is shaped by mitochondrial genetics. Cell Rep 38:110254

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kowarz E, Löscher D, Marschalek R (2015) Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J 10:647–653

    Article  PubMed  Google Scholar 

  14. Tward AD, Jones KD, Yant S et al (2007) Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A 104:14771–14776

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee SA, Ho C, Roy R et al (2007) Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology 47:1200–1210

    Article  Google Scholar 

  16. Patil MA, Lee SA, Macias E et al (2009) Role of cyclin D1 as a mediator of c-Met- and B-catenin-induced hepatocarcinogenesis. Cancer Res 69:253–261

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu CR, Lee S, Ho C et al (2009) Bmi1 functions as an oncogene independent of Ink4a/Arf repression in hepatic carcinogenesis. Mol Cancer Res 7:1937–1945

    Article  PubMed  PubMed Central  Google Scholar 

  18. Calvisi DF, Wang C, Ho C et al (2011) Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140:1071–1083.e5

    Article  PubMed  Google Scholar 

  19. Stauffer JK, Scarzello AJ, Andersen JB et al (2011) Coactivation of AKT and β-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res 71:2718–2727

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang C, Delogu S, Ho C et al (2012) Inactivation of Spry2 accelerates AKT-driven hepatocarcinogenesis via activation of MAPK and PKM2 pathways. J Hepatol 57:577–583

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ju HL, Ahn SH, Kim DY et al (2013) Investigation of oncogenic cooperation in simple liver-specific transgenic mouse models using noninvasive in vivo imaging. PLoS One 8:1–11

    Article  Google Scholar 

  22. Tao J, Xu E, Zhao Y et al (2016) Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point-mutant β-catenin. Hepatology 64:1587–1605

    Article  PubMed  Google Scholar 

  23. Xu Z, Hu J, Cao H et al (2018) Loss of pten synergizes with c-met to promote hepatocellular carcinoma development via mTORC2 pathway. Exp Mol Med 50:e417–e410

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu JJ, Li Y, Chen WS et al (2018) Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol 69:79–88

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qiao Y, Wang J, Karagoz E et al (2019) Axis inhibition protein 1 (Axin1) deletion–induced hepatocarcinogenesis requires intact β-catenin but not notch cascade in mice. Hepatology 70:2003–2017

    Article  PubMed  Google Scholar 

  26. Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P et al (2019) β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 9:1124–1141

    Article  PubMed  Google Scholar 

  27. Wang F, Hou W, Chitsike L et al (2020) ABL1, overexpressed in hepatocellular carcinomas, regulates expression of NOTCH1 and promotes development of liver tumors in mice. Gastroenterology 159:289–305.e16

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Association Française pour l’Etude du Foie (AFEF), and by SIRIC Montpellier Cancer Grant INCa_Inserm_DGOS_12553. We thank Marine Bernardet for providing material for the figure, and Carine Chavey for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Gregoire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ursic-Bedoya, J., Gregoire, D. (2024). Hydrodynamic Transfection of Hepatocytes for the Study of Hepatocellular Carcinogenesis. In: Kroemer, G., Pol, J., Martins, I. (eds) Liver Carcinogenesis. Methods in Molecular Biology, vol 2769. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3694-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3694-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3693-0

  • Online ISBN: 978-1-0716-3694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics