Skip to main content

Chromatin and DNA Dynamics in Mouse Models of Liver Cancers

  • Protocol
  • First Online:
Liver Carcinogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2769))

  • 332 Accesses

Abstract

In recent years, important efforts have been made to understand how the expression of a specific gene repertoire correlates with chromatin accessibility, histone mark deposition, as well as with chromatin looping establishing connectivity with regulatory regions. The emergence of new techniques for genome-wide analyses and their progressive optimization to work on low amounts of material allows the scientific community to obtain an integrated view of transcriptional landscapes in physiology and disease. Here, we describe our own experience aiming at correlating the TCF-4/β-catenin cistrome during liver tumorigenesis with chromatin remodeling, histone mark modifications, and long-distance DNA looping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Romanoski CE, Glass CK, Stunnenberg HG et al (2015) Epigenomics: roadmap for regulation. Nature 518:314–316

    Article  PubMed  Google Scholar 

  2. Ma S, Zhang Y (2020) Profiling chromatin regulatory landscape: insights into the development of ChIP-seq and ATAC-seq. Mol Biomed 1:9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 20:207–220

    Article  PubMed  Google Scholar 

  4. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    Article  PubMed  Google Scholar 

  5. Cadigan KM, Waterman ML (2012) TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 4:4

    Article  Google Scholar 

  6. Mosimann C, Hausmann G, Basler K (2009) Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10:276–286

    Article  PubMed  Google Scholar 

  7. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yochum GS, Sherrick CM, Macpartlin M et al (2010) A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5′ and 3’ Wnt responsive enhancers. Proc Natl Acad Sci U S A 107:145–150

    Article  PubMed  Google Scholar 

  9. Gougelet A, Sartor C, Bachelot L et al (2016) Antitumour activity of an inhibitor of miR-34a in liver cancer with beta-catenin-mutations. Gut 65:1024–1034

    Article  PubMed  Google Scholar 

  10. Gougelet A, Sartor C, Senni N et al (2019) Hepatocellular carcinomas with mutational activation of beta-catenin require choline and can be detected by positron emission tomography. Gastroenterology 157:807

    Article  PubMed  Google Scholar 

  11. Gougelet A, Torre C, Veber P et al (2014) T-cell factor 4 and beta-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 59:2344–2357

    Article  PubMed  Google Scholar 

  12. Corces MR, Trevino AE, Hamilton EG et al (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14:959–962

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buenrostro JD, Wu B, Chang HY et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21 29 21–21 29 29. Edited by Frederick M. Ausubel ... [et al.]

    Article  Google Scholar 

  14. Ea V, Court F, Forne T (2017) Quantitative analysis of intra-chromosomal contacts: The 3C-qPCR method. Methods Mol Biol 1589:75–88

    Article  PubMed  Google Scholar 

  15. Braem C, Recolin B, Rancourt RC et al (2008) Genomic matrix attachment region and chromosome conformation capture quantitative real time PCR assays identify novel putative regulatory elements at the imprinted Dlk1/Gtl2 locus. J Biol Chem 283:18612–18620

    Article  PubMed  Google Scholar 

  16. Corces MR, Buenrostro JD, Wu B et al (2016) Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48:1193–1203

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélique Gougelet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sanceau, J., Forné, T., Chantalat, S., Gougelet, A. (2024). Chromatin and DNA Dynamics in Mouse Models of Liver Cancers. In: Kroemer, G., Pol, J., Martins, I. (eds) Liver Carcinogenesis. Methods in Molecular Biology, vol 2769. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3694-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3694-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3693-0

  • Online ISBN: 978-1-0716-3694-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics