Skip to main content

Macrophage Polarization and Osteoclast Differentiation

  • Protocol
  • First Online:
Rheumatoid Arthritis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2766))

  • 460 Accesses

Abstract

Macrophages are a key player to regulate rheumatoid arthritis pathogenesis from onset to remission. They can alter innate functions under microenvironmental conditions. To understand heterogeneous functions of macrophages in rheumatoid arthritis, several activated statuses of macrophages should be mimicked in vitro. Here, we describe basic protocols for macrophage polarization and osteoclast differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. https://doi.org/10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35. https://doi.org/10.1016/j.immuni.2014.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122(3):787–795. https://doi.org/10.1172/jci59643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orecchioni M, Ghosheh Y, Pramod AB, Ley K (2019) Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front Immunol:10. https://doi.org/10.3389/fimmu.2019.01084

  5. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. https://doi.org/10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  6. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A (2019) The metabolic signature of macrophage responses. Front Immunol 10:1462. https://doi.org/10.3389/fimmu.2019.01462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obach M, Navarro-Sabaté À, Caro J, Kong X, Duran J, Gómez M et al (2004) 6-phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem 279(51):53562–53570. https://doi.org/10.1074/jbc.m406096200

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Zhang P, Wang C, Han C, Meng J, Liu X et al (2013) Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J Biol Chem 288(23):16225–16234. https://doi.org/10.1074/jbc.m113.454538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA et al (2014) Metabolic reprogramming of macrophages. J Biol Chem 289(11):7884–7896. https://doi.org/10.1074/jbc.m113.522037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abhishek KJ, Stanley CCH, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3):419–430. https://doi.org/10.1016/j.immuni.2015.02.005

    Article  CAS  Google Scholar 

  11. Haschemi A, Kosma P, Gille L, Charles RE, Charles FB, Starkl P et al (2012) The Sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15(6):813–826. https://doi.org/10.1016/j.cmet.2012.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM et al (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15(9):846–855. https://doi.org/10.1038/ni.2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tavakoli S, Downs K, Short JD, Nguyen HN, Lai Y, Jerabek PA et al (2017) Characterization of macrophage polarization states using combined measurement of 2-deoxyglucose and glutamine accumulation. Arterioscler Thromb Vasc Biol 37(10):1840–1848. https://doi.org/10.1161/atvbaha.117.308848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith D, The M (2011) Normal synovium. Open Rheumatol J 5(1):100–106. https://doi.org/10.2174/1874312901105010100

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kurowska-Stolarska M, Alivernini S (2017) Synovial tissue macrophages: friend or foe? RMD Open 3(2):e000527. https://doi.org/10.1136/rmdopen-2017-000527

    Article  PubMed  PubMed Central  Google Scholar 

  16. Culemann S, Gruneboom A, Nicolas-Avila JA, Weidner D, Lammle KF, Rothe T et al (2019) Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572(7771):670–675. https://doi.org/10.1038/s41586-019-1471-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alivernini S, Macdonald L, Elmesmari A, Finlay S, Tolusso B, Gigante MR et al (2020) Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat Med 26(8):1295–1306. https://doi.org/10.1038/s41591-020-0939-8

    Article  CAS  PubMed  Google Scholar 

  18. Hasegawa T, Kikuta J, Sudo T, Matsuura Y, Matsui T, Simmons S et al (2019) Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol 20(12):1631–1643. https://doi.org/10.1038/s41590-019-0526-7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritaka Saeki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saeki, N., Nakata, A. (2024). Macrophage Polarization and Osteoclast Differentiation. In: Liu, S. (eds) Rheumatoid Arthritis. Methods in Molecular Biology, vol 2766. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3682-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3682-4_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3681-7

  • Online ISBN: 978-1-0716-3682-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics