Skip to main content

In Situ Hybridization of circRNAs in Cells and Tissues through BaseScope™ Strategy

  • Protocol
  • First Online:
Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2765))

  • 372 Accesses

Abstract

Imaging-based approaches are powerful strategies that nowadays have been largely used to gain insight into the function of different types of macromolecules. As for RNA, it is becoming clear how important is its intracellular localization for the control of proper cell differentiation and development and how its perturbation can be linked to several pathological states. This aspect is even more important if one thinks of highly polarized cells such as neurons.

In this chapter, we describe in detail an innovative RNA-FISH approach for the detection of circular RNAs (circRNAs), a recently discovered class of noncoding RNAs, which display different subcellular localizations and whose functions still largely remain to be elucidated. The detection of these molecules represents a great challenge, above all because they share most of their sequence with the corresponding linear counterparts, from which they differ only for the back-splicing junction (BSJ) originating from the circularization reaction. This implies the use of RNA-FISH probes capable of specifically binding the BSJ and avoiding the detection of the linear counterpart. This requirement imposes the design of probes on a very small region, which implies the risk of obtaining a low and undetectable signal. The BaseScope™ Assay RNA-FISH technology overpasses this problem since it is based on branched-DNA probes. With this approach it is possible to target a specific region of the RNA, even small such as a splicing junction, and at the same time to obtain a strong and well detectable signal. All this is possible thanks to subsequent series of probes that, starting from the first hybridization to the BSJ, build a branched tree of probes that greatly amplifies the signal. Here we provide a detailed step-by-step protocol of BaseScope™ RNA-FISH on circRNAs coupled with immunofluorescence, both in cells and tissues, and we address difficulties which may arise when using this methodology that depend on cell type, specific permeabilization, image acquisition, and post-acquisition analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445. https://doi.org/10.1016/s1097-2765(00)80143-4

    Article  CAS  PubMed  Google Scholar 

  2. Darzacq X, Shav-Tal Y, de Turris V et al (2007) In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 14(9):796–806. https://doi.org/10.1038/nsmb1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tutucci E, Vera M, Biswas J et al (2018) An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 1:81–89. https://doi.org/10.1038/nmeth.4502

    Article  CAS  Google Scholar 

  4. Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16(2):95–109. https://doi.org/10.1038/nrm3918

    Article  CAS  PubMed  Google Scholar 

  5. Unfried JP, Ulitsky I (2022) Substoichiometric action of long noncoding RNAs. Nat Cell Biol 24(5):608–615. https://doi.org/10.1038/s41556-022-00911-1

    Article  CAS  PubMed  Google Scholar 

  6. Guo Q, Shi X, Wang X (2021) RNA and liquid-liquid phase separation. Noncoding RNA Res 6(2):92–99. https://doi.org/10.1016/j.ncrna.2021.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhat P, Honson D, Guttman M (2021) Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol 22(10):653–670. https://doi.org/10.1038/s41580-021-00387-1

    Article  CAS  PubMed  Google Scholar 

  8. Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9

    Article  CAS  PubMed  Google Scholar 

  9. Banani SF, Lee HO, Hyman AA et al (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5):285–298. https://doi.org/10.1038/nrm.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Treeck B, Parker R (2018) Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174(4):791–802. https://doi.org/10.1016/j.cell.2018.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roden C, Gladfelter AS (2021) RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22(3):183–195. https://doi.org/10.1038/s41580-020-0264-6

    Article  CAS  PubMed  Google Scholar 

  12. Elguindy MM, Mendell JT (2021) NORAD-induced Pumilio phase separation is required for genome stability. Nature 595(7866):303–308. https://doi.org/10.1038/s41586-021-03633-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernandopulle MS, Lippincott-Schwartz J, Ward ME (2021) RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci 24(5):622–632. https://doi.org/10.1038/s41593-020-00785-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soares RJ, Maglieri G, Gutschner T et al (2018) Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res 46(1):e4. https://doi.org/10.1093/nar/gkx946

    Article  CAS  PubMed  Google Scholar 

  15. Femino AM, Fay FS, Fogarty K et al (1998) Visualization of single RNA transcripts in situ. Science 280(5363):585–590. https://doi.org/10.1126/science.280.5363.585

    Article  CAS  PubMed  Google Scholar 

  16. Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protocol 2(6):1508–1514. https://doi.org/10.1038/nprot.2007.153

    Article  CAS  Google Scholar 

  17. Battich N, Stoeger T, Pelkmans L (2013) Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10(11):1127–1133. https://doi.org/10.1038/nmeth.2657

    Article  CAS  PubMed  Google Scholar 

  18. Santini T, Martone J, Ballarino M (2021) Visualization of nuclear and cytoplasmic long noncoding RNAs at single-cell level by RNA-FISH. Methods Mol Biol 2157:251–280. https://doi.org/10.1007/978-1-0716-0664-3_15

    Article  CAS  PubMed  Google Scholar 

  19. Desideri F, Cipriano A, Petrezselyova S et al (2020) Intronic determinants coordinate Charme lncRNA nuclear activity through the interaction with MATR3 and PTBP1. Cell Rep 33(12):108548. https://doi.org/10.1016/j.celrep.2020.108548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kloosterman WP, Wienholds E, de Bruijn E et al (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3(1):27–29. https://doi.org/10.1038/nmeth843

    Article  CAS  PubMed  Google Scholar 

  21. Kristensen LS, Andersen MS, Stagsted LVW et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  22. D’Ambra E, Capauto D, Morlando M (2019) Exploring the regulatory role of circular RNAs in neurodegenerative disorders. Int J Mol Sci 20(21):5477. https://doi.org/10.3390/ijms20215477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wichterle H, Peljto M (2008) Differentiation of mouse embryonic stem cells to spinal motor neurons. Curr Protoc Stem Cell Biol Chapter 1:Unit 1H.1.1–1H.1.9. https://doi.org/10.1002/9780470151808.sc01h01s5

  24. D’Ambra E, Santini T, Vitiello E et al (2021) Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS. iScience 24(12):103504. https://doi.org/10.1016/j.isci.2021.103504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu W, Rask-Andersen H (2022) GJB2 and GJB6 gene transcripts in the human cochlea: a study using RNAscope, confocal, and super-resolution structured illumination microscopy. Front Mol Neurosci 15:973646. https://doi.org/10.3389/fnmol.2022.973646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu W, Rask-Andersen H (2022) Na/K-ATPase gene expression in the human cochlea: a study using mRNA in situ hybridization and super-resolution structured illumination microscopy. Front Mol Neurosci 15:857216. https://doi.org/10.3389/fnmol.2022.857216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lange TS, Bielinsky AK, Kirchberg K et al (1994) Mg2+ and Ca2+ differentially regulate beta 1 integrin-mediated adhesion of dermal fibroblasts and keratinocytes to various extracellular matrix proteins. Exp Cell Res 214(1):381–388. https://doi.org/10.1006/excr.1994.1271

    Article  CAS  PubMed  Google Scholar 

  28. Day ES, Osborn L, Whitty A (2002) Effect of divalent cations on the affinity and selectivity of alpha4 integrins towards the integrin ligands vascular cell adhesion molecule-1 and mucosal addressin cell adhesion molecule-1: Ca2+ activation of integrin alpha4beta1 confers a distinct ligand specificity. Cell Commun Adhes 9(4):205–219. https://doi.org/10.1080/15419060216014

    Article  CAS  PubMed  Google Scholar 

  29. Brown CW, Amante JJ, Mercurio AM (2018) Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells. J Biol Chem 293(33):12741–12748. https://doi.org/10.1074/jbc.RA118.003017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 8:845–853. https://doi.org/10.1177/33.8.3894502

    Article  Google Scholar 

  31. Thavarajah R, Mudimbaimannar VK, Elizabeth J et al (2012) Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 16(3):400–405. https://doi.org/10.4103/0973-029X.102496

    Article  PubMed  PubMed Central  Google Scholar 

  32. Titford M (2021) Safety considerations in the use of fixatives. J Hystotechnol 24(3):165–171. https://doi.org/10.1179/his.2001.24.3.165

    Article  Google Scholar 

  33. Bussolati G, Annaratone L, Medico E et al (2011) Formalin fixation at low temperature better preserves nucleic acid integrity. PLoS One 6(6):e21043. https://doi.org/10.1371/journal.pone.0021043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young AP, Jackson DJ, Wyeth RC (2020) A technical review and guide to RNA fluorescence in situ hybridization. PeerJ 19(8):e8806. https://doi.org/10.7717/peerj.8806

    Article  CAS  Google Scholar 

  35. Griffiths G, McDowall A, Back R et al (1984) On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res 89(1):65–78. https://doi.org/10.1016/s0022-5320(84)80024-6

    Article  CAS  PubMed  Google Scholar 

  36. Gf B, Bloom G, Friberg U (1957) Volume changes of tissues in physiological fluids during fixation in osmium tetroxide or formaldehyde and during subsequent treatment. Exp Cell Res 12(2):342–355. https://doi.org/10.1016/0014-4827(57)90148-9

    Article  Google Scholar 

  37. Brandtzaeg P (1981) Prolonged incubation time in immunohistochemistry: effects on fluorescence staining of immunoglobulins and epithelial components in ethanol- and formaldehyde-fixed paraffin-embedded tissues. J Histochem Cytochem 29(11):1302–1315. https://doi.org/10.1177/29.11.7033362

    Article  CAS  PubMed  Google Scholar 

  38. Abbe E (1873) Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikrosk Anat 9:413–418. https://doi.org/10.1007/BF02956173

    Article  Google Scholar 

  39. Müller M, Mönkemöller V, Hennig S et al (2016) Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat Commun 7:10980. https://doi.org/10.1038/ncomms10980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ball G, Demmerle J, Kaufmann R et al (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915. https://doi.org/10.1038/srep15915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from ERC-2019-SyG 855923-ASTRA, AIRC IG 2019 Id. 23053, PRIN 2017 n. 2017P352Z4, H2020 Program “Sapienza Progetti Collaborativi.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Bozzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

D’Ambra, E., Vitiello, E., Santini, T., Bozzoni, I. (2024). In Situ Hybridization of circRNAs in Cells and Tissues through BaseScope™ Strategy. In: Dieterich, C., Baudet, ML. (eds) Circular RNAs. Methods in Molecular Biology, vol 2765. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3678-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3678-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3677-0

  • Online ISBN: 978-1-0716-3678-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics