Skip to main content

Engineering Synthetic circRNAs for Efficient CNS Expression

  • Protocol
  • First Online:
Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2765))

  • 422 Accesses

Abstract

Circular RNAs (circRNAs) have recently emerged as a promising modality for gene and RNA-based therapies. They are more stable than their linear counterpart and can be designed for efficient expression in different cell and tissue types. In this chapter, we developed different backsplicing circRNA cassettes that can enable efficient gene expression in various cell and tissue types. Furthermore, we packaged cassettes encoding circRNAs into adeno-associated viral (AAV) vectors that can be delivered via intracerebroventricular (ICV) injections to achieve expression in murine brain tissue. We provide detailed methods for the design of backsplicing circRNAs, circRNA detection, and generation of AAV-circRNA vectors for CNS dosing and expression in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holdt LM, Kohlmaier A, Teupser D (2018) Circular RNAs as therapeutic agents and targets. Front Physiol 9:1262. https://doi.org/10.3389/fphys.2018.01262

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stoll L, Sobel J, Rodriguez-Trejo A, Guay C, Lee K, Venø MT et al (2018) Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab 9:69–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R et al (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood–brain barrier integrity. J Neurosci 38(1):32–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  PubMed  Google Scholar 

  5. Liu B, Ye B, Zhu X, Yang L, Li H, Liu N, Zhu P, Lu T, He L, Tian Y, Fan Z (2020) An inducible circular RNA circKcnt2 inhibits ILC3 activation to facilitate colitis resolution. Nat Commun 11(1):4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  7. Gong X, Tian M, Cao N, Yang P, Xu Z, Zheng S et al (2021) Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation. J Clin Investig 131(24):e147031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  9. Man W, Cui Y, Li J, Li Y, Jin J, Jin Y, Wu X, Zhong R, Li X, Yao H, Lin Y, Jiang L, Wang Y (2022) circTAB2 inhibits lung cancer proliferation, migration and invasion by sponging miR-3142 to upregulate GLIS2. Apoptosis. https://doi.org/10.1007/s10495-022-01805-1

  10. Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science (New York, NY) 268(5209):415–417

    Article  CAS  Google Scholar 

  11. Zhang Y, Zhang X, Shen Z, Qiu Q, Tong X, Pan J, Zhu M, Hu X, Gong C (2022) BmNPV circular RNA-encoded peptide VSP39 promotes viral replication. Int J Biol Macromol 228:299–310

    Article  PubMed  Google Scholar 

  12. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y (2016) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44(3):1370–1383

    Article  CAS  PubMed  Google Scholar 

  13. Wilusz JE (2018) A 360° view of circular RNAs: from biogenesis to functions. Wiley Interdiscip Rev RNA 9(4):e1478. https://doi.org/10.1002/wrna.1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Monat C, Cousineau B (2016) Circularization pathway of a bacterial group II intron. Nucleic Acids Res 44(4):1845–1853

    Article  PubMed  Google Scholar 

  15. Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y et al (2015) Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21(9):1554–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA (New York, NY) 21(2):172–179

    Article  CAS  Google Scholar 

  17. Chen R, Wang SK, Belk JA, Amaya L, Li Z, Cardenas A, Abe BT, Chen CK, Wender PA, Chang HY (2022) Engineering circular RNA for enhanced protein production. Nat Biotechnol 41:262. https://doi.org/10.1038/s41587-022-01393-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meganck RM, Liu J, Hale AE, Simon KE, Fanous MM, Vincent HA, Wilusz JE, Moorman NJ, Marzluff WF, Asokan A (2021) Engineering highly efficient backsplicing and translation of synthetic circRNAs. Mol Ther Nucleic Acids 23:821–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Huang L (2014) Lipid nanoparticles for gene delivery. Adv Genet 88:13–36

    Article  CAS  PubMed  Google Scholar 

  20. Topal J, Panchal N, Barroeta A, Roppelt A, Mudde A, Gaspar HB, Thrasher AJ, Houghton BC, Booth C (2023) Lentiviral Gene Transfer Corrects Immune Abnormalities in XIAP Deficiency. J Clin Immunol 43(2):440–451. https://doi.org/10.1007/s10875-022-01389-0gonz

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez TJ, Simon KE, Blondel LO, Fanous MM, Roger AL, Maysonet MS, Devlin GW, Smith TJ, Oh DK, Havlik LP, Castellanos Rivera RM, Piedrahita JA, ElMallah MK, Gersbach CA, Asokan A (2022) Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing. Nat Commun 13(1):5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stanton AC, Lagerborg KA, Tellez L, Krunnfusz A, King EM, Ye S, Solomon IH, Tabebordbar M, Sabeti PC (2023) Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med (New York, NY) 4(1):31–50.e8

    CAS  Google Scholar 

  23. Meganck RM, Borchardt EK, Castellanos Rivera RM, Scalabrino ML, Wilusz JE, Marzluff WF, Asokan A (2018) Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids 13:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A (2023) Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 30:503. https://doi.org/10.1038/s41434-022-00380-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuhn B, Ozden I, Lampi Y, Hasan MT, Wang SS (2012) An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex. Front Neural Circuits 6:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q, Zhang P, Xiong Z, He C, Huang Z, Liu B, Yang Y (2017) ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 11(4):422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247

    Article  PubMed  PubMed Central  Google Scholar 

  29. Noren NK, Pasquale EB (2007) Paradoxes of the EphB4 receptor in cancer. Cancer Res 67(9):3994–3997

    Article  CAS  PubMed  Google Scholar 

  30. Xu T, Wu J, Han P, Zhao Z, Song X (2017) Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. BMC Genomics 18(Suppl 6):680

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meganck RM, Borchardt EK, Castellanos Rivera RM, Scalabrino ML, Wilusz JE, Marzluff WF, Asokan A (2018) Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Therapy Nucleic acids 13:89–98

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18(5):358–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ (2022) AAV vectors: the Rubik’s cube of human gene therapy. Mol Ther 30(12):3515–3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elmore ZC, Patrick Havlik L, Oh DK, Anderson L, Daaboul G, Devlin GW, Vincent HA, Asokan A (2021) The membrane associated accessory protein is an adeno-associated viral egress factor. Nat Commun 12(1):6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01NS099371 to A.A., W.F.M., and J.E.W. and R01HL089221, R01GM127708, and UG3AR075336 to A.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Asokan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clements, K.N., Gonzalez, T.J., Asokan, A. (2024). Engineering Synthetic circRNAs for Efficient CNS Expression. In: Dieterich, C., Baudet, ML. (eds) Circular RNAs. Methods in Molecular Biology, vol 2765. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3678-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3678-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3677-0

  • Online ISBN: 978-1-0716-3678-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics