Skip to main content

A Decision Tree to Guide Human and Mouse Mammary Organoid Model Selection

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2764))

Abstract

Over the past 50 years, researchers from the mammary gland field have launched a collection of distinctive 3D cell culture systems to study multiple aspects of mammary gland physiology and disease. As our knowledge about the mammary gland evolves, more sophisticated 3D cell culture systems are required to answer more and more complex questions. Nowadays, morphologically complex mammary organoids can be generated in distinct 3D settings, along with reproduction of multiple aspects of the gland microenvironment. Yet, each 3D culture protocol comes with its advantages and limitations, where some culture systems are best suited to study stemness potential, whereas others are tailored towards the study of mammary gland morphogenesis. Therefore, prior to starting a 3D mammary culture experiment, it is important to consider and select the ideal culture model to address the biological question of interest. The number and technical requirements of novel 3D cell culture methods vastly increased over the past decades, making it currently challenging and time consuming to identify the best experimental testing. In this chapter, we provide a summary of the most promising murine and human 3D organoid models that are currently used in mammary gland biology research. For each model, we will provide a brief description of the protocol and an overview of the expected morphological outcome, the advantages of the model, and the potential pitfalls, to guide the reader to the best model of choice for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557. https://doi.org/10.1002/wdev.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sternlicht MD, Kouros-Mehr H, Lu P et al (2006) Hormonal and local control of mammary branching morphogenesis. Differentiation 74:365–381. https://doi.org/10.1111/j.1432-0436.2006.00105.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Messal HA, van Rheenen J, Scheele CLGJ (2021) An intravital microscopy toolbox to study mammary gland dynamics from cellular level to organ scale. J Mammary Gland Biol Neoplasia 26:9–27. https://doi.org/10.1007/s10911-021-09487-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dawson CA, Mueller SN, Lindeman GJ et al (2021) Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat Protoc 16:1907–1935. https://doi.org/10.1038/s41596-020-00473-2

    Article  CAS  PubMed  Google Scholar 

  5. Rios AC, Capaldo BD, Vaillant F et al (2019) Intraclonal plasticity in mammary tumors revealed through large-scale single-cell resolution 3D imaging. Cancer Cell 35:618–632.e6. https://doi.org/10.1016/j.ccell.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  6. Carabaña C, Lloyd-Lewis B (2022) Multidimensional fluorescence imaging of embryonic and postnatal mammary gland development. In: Vivanco M (ed) Mammary stem cells, Methods in molecular biology, vol 2471. Humana, New York, pp 19–48. https://doi.org/10.1007/978-1-0716-2193-6_2

    Chapter  Google Scholar 

  7. Streuli CH, Bailey N, Bissell MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol 115:1383–1395. https://doi.org/10.1083/jcb.115.5.1383

    Article  CAS  PubMed  Google Scholar 

  8. Ewald AJ, Brenot A, Duong M et al (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581. https://doi.org/10.1016/j.devcel.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emerman JT, Pitelka DR (1977) Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328. https://doi.org/10.1007/BF02616178

    Article  CAS  PubMed  Google Scholar 

  10. Lee EY, Parry G, Bissell MJ (1984) Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J Cell Biol 98:146–155. https://doi.org/10.1083/jcb.98.1.146

    Article  CAS  PubMed  Google Scholar 

  11. Barcellos-Hoff MH, Aggeler J, Ram TG et al (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235. https://doi.org/10.1242/dev.105.2.223

    Article  CAS  PubMed  Google Scholar 

  12. Li ML, Aggeler J, Farson DA et al (1987) Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A 84:136–140. https://doi.org/10.1073/pnas.84.1.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sumbal J, Budkova Z, Traustadóttir GA et al (2020) Mammary organoids and 3D cell cultures: old dogs with new tricks. J Mammary Gland Biol Neoplasia 25(4):273–288. https://doi.org/10.1007/s10911-020-09468-x

    Article  PubMed  Google Scholar 

  14. Simian M, Bissell MJ (2017) Organoids: a historical perspective of thinking in three dimensions. J Cell Biol 216:31–40. https://doi.org/10.1083/jcb.201610056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stingl J, Eaves CJ, Zandieh I et al (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 67(2):93–109. https://doi.org/10.1023/a:1010615124301

    Article  CAS  PubMed  Google Scholar 

  16. Stingl J, Emerman JT, Eaves CJ (2005) Enzymatic dissociation and culture of normal human mammary tissue to detect progenitor activity. In: Helgason CD, Miller CL (eds) Basic cell culture protocols, Methods in molecular biology™, vol 290. Humana Press, New Jersey, pp 249–264. https://doi.org/10.1385/1-59259-838-2:249

    Chapter  Google Scholar 

  17. Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270. https://doi.org/10.1101/gad.1061803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997. https://doi.org/10.1038/nature04496

    Article  CAS  PubMed  Google Scholar 

  19. Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88. https://doi.org/10.1038/nature04372

    Article  CAS  PubMed  Google Scholar 

  20. Caruso M, Huang S, Mourao L et al (2022) A mammary organoid model to study branching morphogenesis. Front Physiol 13:826107. https://doi.org/10.3389/fphys.2022.826107

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jamieson PR, Dekkers JF, Rios AC et al (2017) Derivation of a robust mouse mammary organoid system for studying tissue dynamics. Development 144:1065–1071. https://doi.org/10.1242/dev.145045

    Article  CAS  PubMed  Google Scholar 

  22. Paine IS, Lewis MT (2017) The terminal end bud: the little engine that could. J Mammary Gland Biol Neoplasia 22:93–108. https://doi.org/10.1007/s10911-017-9372-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sahu S, Albaugh ME, Martin BK et al (2022) Growth factor dependency in mammary organoids regulates ductal morphogenesis during organ regeneration. Sci Rep 12:7200. https://doi.org/10.1038/s41598-022-11224-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fata JE, Mori H, Ewald AJ et al (2007) The MAPKERK-1,2 pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 306:193–207. https://doi.org/10.1016/j.ydbio.2007.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H et al (2006) Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 133:1203

    Article  CAS  Google Scholar 

  26. Koledova Z, Sumbal J (2019) FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 146(23):dev185306. https://doi.org/10.1242/dev.185306

    Article  CAS  PubMed  Google Scholar 

  27. Sumbal J, Vranova T, Koledova Z (2020) FGF signaling dynamics regulates epithelial patterning and morphogenesis. bioRxiv. https://doi.org/10.1101/2020.11.17.386607

  28. Zhang X, Martinez D, Koledova Z et al (2014) FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development 141:3352–3362. https://doi.org/10.1242/dev.106732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lasfargues EY (1957) Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. Anat Rec 127:117–129. https://doi.org/10.1002/ar.1091270111

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen-Ngoc K-V, Shamir ER, Huebner RJ et al (2015) 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. In: Nelson C (ed) Tissue morphogenesis, Methods in molecular biology, vol 1189. Humana Press, New York, pp 135–162. https://doi.org/10.1007/978-1-4939-1164-6_10

    Chapter  Google Scholar 

  31. Sumbal J, Chiche A, Charifou E et al (2020) Primary mammary organoid model of lactation and involution. Front Cell Dev Biol 8:68. https://doi.org/10.3389/fcell.2020.00068

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kouros-Mehr H, Werb Z (2006) Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235:3404–3412. https://doi.org/10.1002/dvdy.20978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scheele CLGJ, Hannezo E, Muraro MJ et al (2017) Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542:313–317. https://doi.org/10.1038/nature21046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Twigger A-J, Khaled WT (2021) Mammary gland development from a single cell ‘omics view. Semin Cell Dev Biol 114:171–185. https://doi.org/10.1016/j.semcdb.2021.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pal B, Chen Y, Milevskiy MJG et al (2021) Single cell transcriptome atlas of mouse mammary epithelial cells across development. Breast Cancer Res 23:69. https://doi.org/10.1186/s13058-021-01445-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee EY, Lee WH, Kaetzel CS et al (1985) Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc Natl Acad Sci 82:1419–1423. https://doi.org/10.1073/pnas.82.5.1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simian M, Hirai Y, Navre M et al (2001) The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128:3117–3131. https://doi.org/10.1242/dev.128.16.3117

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen-Ngoc K-V, Ewald AJ (2013) Mammary ductal elongation and myoepithelial migration are regulated by the composition of the extracellular matrix. J Microsc 251:212–223. https://doi.org/10.1111/jmi.12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434. https://doi.org/10.1146/annurev.bi.64.070195.002155

    Article  CAS  PubMed  Google Scholar 

  40. Jardé T, Lloyd-Lewis B, Thomas M et al (2016) Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun 7:13207. https://doi.org/10.1038/ncomms13207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Campbell JJ, Botos L-A, Sargeant TJ et al (2014) A 3-D in vitro co-culture model of mammary gland involution. Integr Biol 6:618–626. https://doi.org/10.1039/c3ib40257f

    Article  CAS  Google Scholar 

  42. Charifou E, Sumbal J, Koledova Z et al (2021) A robust mammary organoid system to model lactation and involution-like processes. Bio Protoc 11:e3996. https://doi.org/10.21769/BioProtoc.3996

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parmar H, Cunha GR (2004) Epithelial–stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer 11:437–458. https://doi.org/10.1677/erc.1.00659

    Article  CAS  PubMed  Google Scholar 

  44. McNally S, Stein T (2017) Overview of mammary gland development: a comparison of mouse and human. In: Martin F, Stein T, Howlin J (eds) Mammary gland development, Methods in molecular biology, vol 1501. Humana Press, New York, pp 1–17. https://doi.org/10.1007/978-1-4939-6475-8_1

    Chapter  Google Scholar 

  45. Soule HD, Maloney TM, Wolman SR et al (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086

    CAS  PubMed  Google Scholar 

  46. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268. https://doi.org/10.1016/s1046-2023(03)00032-x

    Article  CAS  PubMed  Google Scholar 

  47. Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:215. https://doi.org/10.1186/bcr2889

    Article  PubMed  PubMed Central  Google Scholar 

  48. Muthuswamy SK, Li D, Lelievre S et al (2001) ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3:785–792. https://doi.org/10.1038/ncb0901-785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krause S, Maffini MV, Soto AM et al (2008) A novel 3D in vitro culture model to study stromal–epithelial interactions in the mammary gland. Tissue Eng Part C Methods 14:261–271. https://doi.org/10.1089/ten.tec.2008.0030

    Article  CAS  PubMed  Google Scholar 

  50. Qu Y, Han B, Yu Y et al (2015) Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells. PLoS One 10:e0131285. https://doi.org/10.1371/journal.pone.0131285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carey SP, Martin KE, Reinhart-King CA (2017) Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci Rep 7:42088. https://doi.org/10.1038/srep42088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rosenbluth JM, Schackmann RCJ, Gray GK et al (2020) Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun 11:1711. https://doi.org/10.1038/s41467-020-15548-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Linnemann JR, Miura H, Meixner LK et al (2015) Quantification of regenerative potential in primary human mammary epithelial cells. Development 142:3239–3251. https://doi.org/10.1242/dev.123554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nedvetsky PI, Kwon S-H, Debnath J et al (2012) Cyclic AMP regulates formation of mammary epithelial acini in vitro. Mol Biol Cell 23:2973–2981. https://doi.org/10.1091/mbc.E12-02-0078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sokol ES, Miller DH, Breggia A et al (2016) Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 18:19. https://doi.org/10.1186/s13058-016-0677-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petersen OW, Rønnov-Jessen L, Howlettt AR et al (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89(19):9064–9068. https://doi.org/10.1073/pnas.89.19.9064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luisier R, Girgin M, Lutolf MP et al (2020) Mammary epithelial morphogenesis in 3D combinatorial microenvironments. Sci Rep 10:21635. https://doi.org/10.1038/s41598-020-78432-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Munne PM, Martikainen L, Räty I et al (2021) Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer. Nat Commun 12:6967. https://doi.org/10.1038/s41467-021-27220-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kutys ML, Polacheck WJ, Welch MK et al (2020) Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nat Commun 11:3377. https://doi.org/10.1038/s41467-020-17102-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pavlovich AL, Manivannan S, Nelson CM (2010) Adipose stroma induces branching morphogenesis of engineered epithelial tubules. Tissue Eng Part A 16:3719–3726. https://doi.org/10.1089/ten.TEA.2009.0836

    Article  PubMed  PubMed Central  Google Scholar 

  61. Campbell JJ, Davidenko N, Caffarel MM et al (2011) A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology. PLoS One 6:e25661. https://doi.org/10.1371/journal.pone.0025661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koledova Z, Lu P (2017) A 3D fibroblast-epithelium co-culture model for understanding micro-environmental role in branching morphogenesis of the mammary gland. In: Martin F, Stein T, Howlin J (eds) Mammary gland development: methods and protocols, Methods in molecular biology, vol 1501. Springer, New York, pp 217–231. https://doi.org/10.1007/978-1-4939-6475-8_10

    Chapter  Google Scholar 

  63. Koledova Z (2017) 3D Coculture of mammary organoids with fibrospheres: a model for studying epithelial-stromal interactions during mammary branching morphogenesis. In: Koledova Z (ed) 3D cell culture: methods and protocols, Methods in molecular biology, vol 1612. Springer, New York, pp 107–124. https://doi.org/10.1007/978-1-4939-7021-6_8

    Chapter  Google Scholar 

  64. Serra D, Mayr U, Boni A et al (2019) Self-organization and symmetry breaking in intestinal organoid development. Nature 569:66–72. https://doi.org/10.1038/s41586-019-1146-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vazquez-Armendariz AI, Herold S (2021) From clones to buds and branches: the use of lung organoids to model branching morphogenesis ex vivo. Front Cell Dev Biol 9:631579. https://doi.org/10.3389/fcell.2021.631579

    Article  PubMed  PubMed Central  Google Scholar 

  66. Busslinger GA, Weusten BLA, Bogte A et al (2021) Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep 34:108819. https://doi.org/10.1038/s41586-019-1146-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fonds voor Wetenschappelijk Onderzoek (PhD fellowship 11O4423N to M.C.), an EMBO long-term postdoctoral fellowship (ALTF 1035-2020 to C.L.G.J.S.), a FEBS excellence award (to C.L.G.J.S.), and an Excellence of Science (EOS) grant (project ID: 40007532) of Fonds Wetenschappelijk Onderzoek- Le Fonds de la Recherche Scientifique (FWO-FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colinda L. G. J. Scheele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caruso, M., Saberiseyedabad, K., Mourao, L., Scheele, C.L.G.J. (2024). A Decision Tree to Guide Human and Mouse Mammary Organoid Model Selection. In: Sumbalova Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 2764. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3674-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3674-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3673-2

  • Online ISBN: 978-1-0716-3674-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics