Skip to main content

Double-Barrel Perfusion System for Modification of Luminal Contents of Intestinal Organoids

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2764))

  • 407 Accesses

Abstract

Organoids are 3D cultures of self-organized adult or pluripotent stem cells with an epithelial membrane enclosing a defined fluid-filled lumen. These organoids have been demonstrated with a wide range of organotypic tissue types, but the enclosed nature of the structure restricts access to the lumen and apical surface of the cell membrane. To increase the potential applications of organoids, new technologies are required to provide access to the lumen of the organoid and apical surface of the epithelial cell membrane to enable new biomedical studies. This chapter details a method to access the lumen and apical surface of an organoid utilizing a double-barrel pulled glass capillary and pressure-based pump. The organoid perfusion system uses a three-axis micromanipulator to position the double-barrel capillary to pierce the organoid with the tip of the capillary. Each barrel of the double-barrel capillary is controlled independently with the pressure-based pump to allow injection and removal of material into and from the lumen. Additionally, the organoid is immobilized with a custom-designed PDMS organoid holder. The design of the components for the organoid perfusion system and details on their use are presented here and can be utilized as the basis to enable a wide range of organoid studies including but not limited to modifying luminal contents and apical cell membrane interactions during organoid cultures, recapitulation of physiological flow within the normally static organoid lumen, and effects of mechanical strain on organoid cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spence JR (2018) Taming the wild west of organoids, enteroids, and mini-guts. Cell Mol Gastroenterol Hepatol 5:159–160. https://doi.org/10.1016/j.jcmgh.2017.11.003

    Article  PubMed  Google Scholar 

  2. McCracken KW, Howell JC, Wells JM et al (2011) Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc 6:1920–1928. https://doi.org/10.1038/NPROT.2011.410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125

    Article  CAS  PubMed  Google Scholar 

  4. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. https://doi.org/10.1038/nature07935

    Article  CAS  PubMed  Google Scholar 

  5. Poletti M, Arnauts K, Ferrante M et al (2021) Organoid-based models to study the role of host-microbiota interactions in IBD. J Crohns Colitis 15:1222–1235. https://doi.org/10.1093/ecco-jcc/jjaa257

    Article  PubMed  Google Scholar 

  6. Hofer M, Lutolf MP (2021) Engineering organoids. Nat Rev Mater 6:402–420. https://doi.org/10.1038/s41578-021-00279-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim GA, Ginga NJ, Takayama S (2018) Integration of sensors in gastrointestinal organoid culture for biological analysis. Cell Mol Gastroenterol Hepatol 6:123–131.e1. https://doi.org/10.1016/j.jcmgh.2018.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sontheimer-Phelps A, Chou DB, Tovaglieri A et al (2020) Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell Mol Gastroenterol Hepatol 9:507–526. https://doi.org/10.1016/j.jcmgh.2019.11.008

    Article  PubMed  Google Scholar 

  9. Shin W, Hinojosa CD, Ingber DE et al (2019) Human intestinal morphogenesis controlled by Transepithelial Morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience 15:391–406. https://doi.org/10.1016/j.isci.2019.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Co JY, Margalef-Català M, Li X et al (2019) Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26:2509–2520.e4. https://doi.org/10.1016/j.celrep.2019.01.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parigoris E, Lee J-H, Liu AY et al (2022) Extended longevity geometrically-inverted proximal tubule organoids for protein uptake studies. bioRxiv 20220324485493. https://doi.org/10.1101/2022.03.24.485493

  12. Lee KK, McCauley HA, Broda TR et al (2018) Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab Chip 18:3079–3085. https://doi.org/10.1039/c8lc00910d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sidar B, Jenkins BR, Huang S et al (2019) Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip). Lab Chip 19:3552–3562. https://doi.org/10.1039/c9lc00653b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ginga NJ, Slyman R, Kim G-A et al (2022) Perfusion system for modification of luminal contents of human intestinal organoids and realtime imaging analysis of microbial populations. Micromachines 13:131. https://doi.org/10.3390/mi13010131

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gopurappilly R, Pal R (2022) Bioengineering of brain organoids: advancements and challenges. In: Sharma CP, Chandy T, Thomas V et al (eds) Tissue engineering. Academic Press, Cambridge, pp 399–414. https://doi.org/10.1016/B978-0-12-824064-9.00002-2

    Chapter  Google Scholar 

  16. Grassart A, Malardé V, Gobba S et al (2019) Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell Host Microbe 26:435–444.e4. https://doi.org/10.1016/j.chom.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  17. Kim HJ, Huh D, Hamilton G et al (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174. https://doi.org/10.1039/c2lc40074j

    Article  CAS  PubMed  Google Scholar 

  18. Yum K, Hong SG, Healy KE et al (2014) Physiologically relevant organs on chips. Biotechnol J 9:16–27. https://doi.org/10.1002/biot.201300187

    Article  CAS  PubMed  Google Scholar 

  19. Kim HJ, Li H, Collins JJ et al (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 113:E7–E15. https://doi.org/10.1073/pnas.1522193112

    Article  CAS  PubMed  Google Scholar 

  20. Ingber E (2016) Reverse engineering human pathophysiology with organs-on-chips. Cell 164:1105–1109. https://doi.org/10.1016/j.cell.2016.02.049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Shuichi Takayama for supporting and developing these methods, Ge-Ah Kim for aiding with experiments and imaging of organoids, and Professor Jason Spence, Professor Vincent B. Young, Sha Huang, and Veda K. Yadagiri for supplying organoids for perfusion experiments and for invaluable discussions. This material is based upon work supported by the National Institute of Health (NIH) (Grant Number: U19 AI116482 and R01 HL136141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Ginga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ginga, N.J., Slyman, R. (2024). Double-Barrel Perfusion System for Modification of Luminal Contents of Intestinal Organoids. In: Sumbalova Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 2764. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3674-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3674-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3673-2

  • Online ISBN: 978-1-0716-3674-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics