Skip to main content

Enduring Ethanol-Induced Behavioral Alterations in Caenorhabditis elegans After Developmental Lead Exposure

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2753))

  • 283 Accesses

Abstract

The roundworm Caenorhabditis elegans (C. elegans) has become a powerful tool to evaluate the deleterious effects of early-life exposure to xenobiotics, including metals. The present chapter describes a detailed protocol for developmental lead (Pb)-exposure in C. elegans. Preliminary assays as well as the final procedure are described in detail. In addition, further protocols aimed to assess ethanol exposure at later stages of life demonstrate the impact of this drug on locomotor behavior, revealing the enduring effects that Pb can imprint on this organism when exposure occurs during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meneely PM, Dahlberg CL, Rose JK (2019) Working with worms: Caenorhabditis elegans as a model organism. Curr Protoc Essent Lab Tech 19:e35. https://doi.org/10.1002/cpet.35

    Article  Google Scholar 

  2. Cassada RC, Russell RL (1975) The dauer larva, a post-embryonic nematode developmental elegans variant of the Caenorhabditis. Dev Biol 46(2):326–342. https://doi.org/10.1016/0012-1606(75)90109-8

    Article  PubMed  CAS  Google Scholar 

  3. Albert PS, Riddle DL (1988) Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol 126(2):270–293. https://doi.org/10.1016/0012-1606(88)90138-8

    Article  PubMed  CAS  Google Scholar 

  4. Smeal T, Guarente L (1997) Mechanisms of cellular senescence. Curr Opin Genet Dev 7(2):281–287. https://doi.org/10.1016/S0959-437X(97)80139-6

    Article  PubMed  CAS  Google Scholar 

  5. Avila D, Helmcke K, Aschner M (2012) The Caenorhabditis elegans model as a reliable tool in neurotoxicology. Hum Exp Toxicol 31(3):236–243. https://doi.org/10.1177/0960327110392084

    Article  PubMed  CAS  Google Scholar 

  6. Virgolini MB, Aschner M (2021) Molecular mechanisms of lead neurotoxicity. Adv Neurotoxicol 5:159–213. https://doi.org/10.1016/bs.ant.2020.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruszkiewicz JA, Pinkas A, Miah MR, Weitz RL, Lawes MJA, Akinyemi AJ, Ijomone OM, Aschner M (2018) C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 354:126–135. https://doi.org/10.1016/j.taap.2018.03.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Virgolini MB, Mattalloni MS, Albrecht PA, Deza-Ponzio R, Cancela LM (2017) Modulation of ethanol-metabolizing enzymes by developmental lead exposure: effects in voluntary ethanol consumption. Front Behav Neurosci 11:95. https://doi.org/10.3389/fnbeh.2017.00095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Virgolini MB (2022) The intertwining between lead and ethanol in the model organism Caenorhabditis elegans. Front Toxicol 4:991787. https://doi.org/10.3389/ftox.2022.991787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Romero VL, Gonzales-Moreno C, Carranza ADV, Moran Y, Asis R, Virgolini MB (2022) Reduced acute functional tolerance and enhanced preference for ethanol in Caenorhabditis elegans exposed to lead during development: potential role of alcohol dehydrogenase. Neurotoxicol Teratol 94:107131. https://doi.org/10.1016/j.ntt.2022.107131

    Article  PubMed  CAS  Google Scholar 

  11. Alaimo JT, Davis SJ, Song SS, Burnette CR, Grotewiel M, Shelton KL, Pierce-Shimomura JT, Davies AG, Bettinger JC (2012) Ethanol metabolism and osmolarity modify behavioral responses to ethanol in C. elegans. Alcoholism Clin Exp Res 36(11):1840–1850. https://doi.org/10.1111/j.1530-0277.2012.01799.x

    Article  CAS  Google Scholar 

  12. McIntire SL (2010) Ethanol. Worm Book, pp 1–6. https://doi.org/10.1895/wormbook.1.40.1

    Book  Google Scholar 

  13. Davies AG, McIntire SL (2004) Using C. elegans to screen for targets of ethanol and behavior-altering drugs. Biol Proced 6(1):113–119. https://doi.org/10.1251/bpo79

    Article  CAS  Google Scholar 

  14. Davies AG, Blackwell GG, Raabe RC, Bettinger JC (2015) An assay for measuring the effects of ethanol on the locomotion speed of Caenorhabditis elegans. J Vis Exp 2015(98):1–7. https://doi.org/10.3791/52681

    Article  CAS  Google Scholar 

  15. Yu ZY, Chen XX, Zhang J, Wang R, Yin DQ (2013) Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicol Environ Saf 88:178–184. https://doi.org/10.1016/j.ecoenv.2012.11.012

    Article  PubMed  CAS  Google Scholar 

  16. Anderson GL, Boyd WA, Williams PL (2001) Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20(4):833–838. https://doi.org/10.1002/etc.5620200419

    Article  PubMed  CAS  Google Scholar 

  17. Stiernagle T (2006) Maintenance of C. elegans. Worm Book 44(8):085201. https://doi.org/10.1895/wormbook.1.101.1

    Article  Google Scholar 

  18. Tiwari SS, Tambo F, Agarwal R (2020) Assessment of lead toxicity on locomotion and growth in a nematode Caenorhabditis elegans. J Appl Nat Sci 12(1):36–41. https://doi.org/10.31018/jans.v12i1.2227

    Article  CAS  Google Scholar 

  19. Rand JB, Johnson CD (1995) Chapter 8: Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. Methods Cell Biol 48(C):187–204. https://doi.org/10.1016/S0091-679X(08)61388-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported in part by grants from the National Institute of Environmental Health Sciences (NIEHS) R01ES07331 and R01ES10563 (MA) and ANPCyT PICT-2017 CONICET 0874 and PICT-2019 UNC 02444 (MBV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam B. Virgolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernandez-Hubeid, L.E., Albrecht, P.A., Aschner, M., Virgolini, M.B. (2024). Enduring Ethanol-Induced Behavioral Alterations in Caenorhabditis elegans After Developmental Lead Exposure. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 2753. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3625-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3625-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3624-4

  • Online ISBN: 978-1-0716-3625-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics