Skip to main content

Daphnia magna as a Model Organism to Predict the Teratogenic Effect of Different Compounds

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2753))

Abstract

For aquatic ecosystem Daphnia magna is evolving as a model organism to check the teratogenicity of numerous compounds. D. magna can be easily cultured in the laboratory, and the teratogen effect of several compounds can be easily studied. The developmental stages are well studied in D. magna. All the developmental stages are transparent so the defect can be easily accessed. So, the postembryonic developmental changes can be easily studied after the exposure with teratogen. More importantly, D. magna also have a swimming behavioral phenotype. The behavioral defect can be easily accessed after teratogen exposure. The current chapter summarizes numerous protocols associated with embryo and adult staining and adult behavioral assays that can be used to access the teratogenicity of any unknown compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim HJ, Koedrith P, Seo YR (2015) Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. Int J Mol Sci 16(6):12261–12287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dettmers JM, Stein RA (1992) Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Trans Am Fish Soc 121(4):494–507

    Article  Google Scholar 

  3. Baudouin M, Scoppa P (1974) Acute toxicity of various metals to freshwater zooplankton. Bull Environ Contam Toxicol 12(6):745–751

    Article  PubMed  CAS  Google Scholar 

  4. Gulati R (1978) The ecology of common planktonic crustacea of the freshwaters in the Netherlands. Hydrobiologia 59(2):101–112

    Article  Google Scholar 

  5. Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y et al (2019) Combined effects of ZnO nanoparticles and toxic Microcystis on life-history traits of Daphnia magna. Chemosphere 233:482–492

    Article  PubMed  CAS  Google Scholar 

  7. Xie P, Iwakuma T, Fujii K (2000) Effect of available food and temperature on the growth and reproduction of Daphnia rosea. J Freshw Ecol 15(3):379–388

    Article  Google Scholar 

  8. Buser CC, Spaak P, Wolinska J (2012) Disease and pollution alter Daphnia taxonomic and clonal structure in experimental assemblages. Freshw Biol 57(9):1865–1874

    Article  Google Scholar 

  9. Seyoum A, Pradhan A (2019) Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. Sci Total Environ 654:969–977

    Article  PubMed  CAS  Google Scholar 

  10. Brun NR et al (2019) Mixtures of aluminum and indium induce more than additive phenotypic and toxicogenomic responses in Daphnia magna. Environ Sci Technol 53(3):1639–1649

    Article  PubMed  CAS  Google Scholar 

  11. Lampert W (ed) (2011) Daphnia: development of model organism in ecology and evolution. In: Kinne O (ed) Excellence in ecology serie. International Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  12. Ferrando M, Sancho E, Andreu-Moliner E (1995) Effects of lindane on Daphnia magna during chronic exposure. J Environ Sci Health B 30(6):815–825

    Article  Google Scholar 

  13. Abe T et al (2001) Embryonic development assay with Daphnia magna: application to toxicity of aniline derivatives. Chemosphere 45(4–5):487–495

    Article  PubMed  CAS  Google Scholar 

  14. Kim J et al (2010) Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology 19(4):662–669

    Article  PubMed  CAS  Google Scholar 

  15. Wang X et al (2016) Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: the role of catalyst impurities and adsorption capacity. Environ Pollut 208:732–738

    Article  PubMed  CAS  Google Scholar 

  16. Ton S-S et al (2012) Evaluation of acute toxicity and teratogenic effects of disinfectants by Daphnia magna embryo assay. Environ Pollut 168:54–61

    Article  PubMed  CAS  Google Scholar 

  17. Zhang L, Gibble R, Baer K (2003) The effects of 4-nonylphenol and ethanol on acute toxicity, embryo development, and reproduction in Daphnia magna. Ecotoxicol Environ Saf 55(3):330–337

    Article  PubMed  CAS  Google Scholar 

  18. Ebert D (2022) Daphnia as a versatile model system in ecology and evolution. EvoDevo 13(1):16

    Google Scholar 

  19. Khangarot B, Das S (2009) Toxicity of mercury on in vitro development of parthenogenetic eggs of a freshwater Cladoceran Daphnia carinata. J Hazard Mater 161(1):68–73

    Article  PubMed  CAS  Google Scholar 

  20. Barik BK, Mishra M (2019) Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology 13(2):258–284

    Article  PubMed  CAS  Google Scholar 

  21. Park HS et al (2021) Evaluation of silver nanowires (AgNWs) toxicity on reproductive success of Daphnia magna over two generations and their teratogenic effect on embryonic development. J Hazard Mater 412:125339

    Article  PubMed  CAS  Google Scholar 

  22. Scanlan LD et al (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7(12):10681–10694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sohn EK et al (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int 2015:893049

    Article  PubMed  PubMed Central  Google Scholar 

  24. Völker C et al (2013) Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. PLoS One 8(10):e75026

    Article  PubMed  PubMed Central  Google Scholar 

  25. Asghari S et al (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10(1):1–11

    Article  Google Scholar 

  26. Hartmann S et al (2019) Comparative multi-generation study on long-term effects of pristine and wastewater-borne silver and titanium dioxide nanoparticles on key lifecycle parameters in Daphnia magna. NanoImpact 14:100163

    Article  Google Scholar 

  27. Qiu T et al (2015) Gene expression as an indicator of the molecular response and toxicity in the bacterium Shewanella oneidensis and the water flea Daphnia magna exposed to functionalized gold nanoparticles. Environ Sci Nano 2(6):615–629

    Article  CAS  Google Scholar 

  28. Wang J et al (2020) Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues. Ecotoxicol Environ Saf 203:111046

    Article  PubMed  CAS  Google Scholar 

  29. Fidan M, Arif A (2020) An in vivo study on Drosophila melanogaster, Artemia salina, and Daphnia magna: is activated carbon used as a food additive reliable? Int J Sci Lett 2(2):79–91

    Article  Google Scholar 

  30. Song J et al (2022) Transgenerational effects of polyethylene microplastic fragments containing benzophenone-3 additive in Daphnia magna. J Hazard Mater 436:129225

    Article  PubMed  CAS  Google Scholar 

  31. Guilhermino L et al (2021) Long-term adverse effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity: combined effects of stressors and interactions. Sci Total Environ 784:147082

    Article  PubMed  CAS  Google Scholar 

  32. Dao T-S et al (2018) Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations. Environ Pollut 243:791–799

    Article  PubMed  CAS  Google Scholar 

  33. Shaw JR et al (2019) Dynamics of cadmium acclimation in Daphnia pulex: linking fitness costs, cross-tolerance, and hyper-induction of metallothionein. Environ Sci Technol 53(24):14670–14678

    Article  PubMed  CAS  Google Scholar 

  34. Nogueira DJ et al (2022) Individual and combined multigenerational effects induced by polystyrene nanoplastic and glyphosate in Daphnia magna (Strauss, 1820). Sci Total Environ 811:151360

    Article  PubMed  CAS  Google Scholar 

  35. Wang K-S, Lu C-Y, Chang S-H (2011) Evaluation of acute toxicity and teratogenic effects of plant growth regulators by Daphnia magna embryo assay. J Hazard Mater 190(1–3):520–528

    Article  PubMed  CAS  Google Scholar 

  36. Palma P et al (2009) Embryo-toxic effects of environmental concentrations of chlorpyrifos on the crustacean Daphnia magna. Ecotoxicol Environ Saf 72(6):1714–1718

    Article  PubMed  CAS  Google Scholar 

  37. Fernandez-Casalderrey A, Ferrando M, Andreu-Moliner E (1993) Effect of the insecticide methylparathion on filtration and ingestion rates of Brachionus calyciflorus and Daphnia magna. Sci Total Environ 134:867–876

    Article  Google Scholar 

  38. LeBlanc GA, Mu X, Rider CV (2000) Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environ Health Perspect 108(12):1133–1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mu X, LeBlanc GA (2002) Developmental toxicity of testosterone in the crustacean Daphnia magna involves anti-ecdysteroidal activity. Gen Comp Endocrinol 129(2):127–133

    Article  PubMed  CAS  Google Scholar 

  40. Heijerick DG et al (2005) Development of a chronic zinc biotic ligand model for Daphnia magna. Ecotoxicol Environ Saf 62(1):1–10

    Article  PubMed  CAS  Google Scholar 

  41. Ohta T et al (1998) An assay system for detecting environmental toxicants with cultured cladoceran eggs in vitro: malformations induced by ethylenethiourea. Environ Res 77(1):43–48

    Article  PubMed  CAS  Google Scholar 

  42. Abe T et al (2000) Embryonic development assay with Daphnia magna: application to toxicity of chlorophenols. Water Sci Technol 42(7–8):297–304

    Article  CAS  Google Scholar 

  43. Kast-Hutcheson K, Rider CV, LeBlanc GA (2001) The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna. Environ Toxicol Chem 20(3):502–509

    Article  PubMed  CAS  Google Scholar 

  44. Silva ARR et al (2017) Multigenerational effects of carbendazim in Daphnia magna. Environ Toxicol Chem 36(2):383–394

    Article  PubMed  CAS  Google Scholar 

  45. Poulsen R et al (2021) Grandmother’s pesticide exposure revealed bi-generational effects in Daphnia magna. Aquat Toxicol 236:105861

    Article  PubMed  CAS  Google Scholar 

  46. Bownik A, Åšlaska B, Dudka J (2020) Cisplatin affects locomotor activity and physiological endpoints of Daphnia magna. J Hazard Mater 384:121259

    Article  PubMed  CAS  Google Scholar 

  47. Schwarzenberger A, Chen L, Weiss LC (2020) The expression of circadian clock genes in Daphnia magna diapause. Sci Rep 10(1):1–7

    Article  Google Scholar 

  48. Pauwels K et al (2007) Evolution of heat shock protein expression in a natural population of Daphnia magna. Am Nat 170(5):800–805

    Article  PubMed  Google Scholar 

  49. Fuertes I, Barata C (2021) Characterization of neurotransmitters and related metabolites in Daphnia magna juveniles deficient in serotonin and exposed to neuroactive chemicals that affect its behavior: a targeted LC-MS/MS method. Chemosphere 263:127814

    Article  PubMed  CAS  Google Scholar 

  50. Asselman J et al (2019) Genome-wide stress responses to copper and arsenic in a field population of Daphnia. Environ Sci Technol 53(7):3850–3859

    Article  PubMed  CAS  Google Scholar 

  51. Trijau M et al (2018) Transgenerational DNA methylation changes in Daphnia magna exposed to chronic γ irradiation. Environ Sci Technol 52(7):4331–4339

    Article  PubMed  CAS  Google Scholar 

  52. Fox HM (1948) The haemoglobin of Daphnia. Proc R Soc Lond B Biol Sci 135(879):195–212

    Article  CAS  Google Scholar 

  53. Sobral O et al (2001) In vitro development of parthenogenetic eggs: a fast ecotoxicity test with Daphnia magna? Ecotoxicol Environ Saf 50(3):174–179

    Article  PubMed  CAS  Google Scholar 

  54. Dao TS, Do-Hong L-C, Wiegand C (2010) Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon 55(7):1244–1254

    Article  PubMed  CAS  Google Scholar 

  55. Agarwal A, Allamaneni SS (2004) Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 9(3):338–347

    Article  PubMed  CAS  Google Scholar 

  56. Ungerer P, Eriksson BJ, Stollewerk A (2011) Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans. Dev Biol 357(1):42–52

    Article  PubMed  CAS  Google Scholar 

  57. Mishra M et al (2022) Drosophila melanogaster as an indispensable model to decipher the mode of action of neurotoxic compounds. Biocell 47:51

    Article  Google Scholar 

  58. Mittmann B et al (2014) Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. EvoDevo 5(1):1–20

    Article  Google Scholar 

  59. Zaffagnini F (1987) Reproduction in Daphnia. Mem Inst Ital Idrobiol 45:245–284

    Google Scholar 

  60. Robichaud NF et al (2012) The epigenetic repertoire of Daphnia magna includes modified histones. Genet Res Int 2012:174860

    PubMed  PubMed Central  Google Scholar 

  61. Michels J, Büntzow M (2010) Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. J Microsc 238:95–101

    Article  PubMed  CAS  Google Scholar 

  62. Cuhra M et al (2015) Glyphosate-residues in roundup-ready soybean impair Daphnia magna life-cycle. J Agric Chem Environ 4:24–36

    Google Scholar 

  63. Harris KDM et al (2012) Daphnia as an emerging epigenetic model organism. Genet Res Int 2012:147892

    PubMed  PubMed Central  Google Scholar 

  64. Salesa B et al (2002) The prochloraz chronic exposure to Daphnia magna derived in biochemical alterations of F0 generation daphnids and malformed F1 progeny. Chemosphere 307:135848

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mishra, M. (2024). Daphnia magna as a Model Organism to Predict the Teratogenic Effect of Different Compounds. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 2753. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3625-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3625-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3624-4

  • Online ISBN: 978-1-0716-3625-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics