Skip to main content

Highly Multiplexed and Simultaneous Characterization of Protein and RNA in Single Cells by Flow or Mass Cytometry Platforms Using Proximity Ligation Assay for RNA

  • Protocol
  • First Online:
Single Cell Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2752))

  • 606 Accesses

Abstract

In situ hybridization of oligonucleotide probes to intracellular RNA allows quantification of predefined gene transcripts within millions of single cells using cytometry platforms. Previous methods have been hindered by the number of RNA that can be analyzed simultaneously. Here we describe a method called proximity ligation assay for RNA (PLAYR) that permits highly multiplexed RNA analysis that can be combined with antibody staining. Potentially any number of RNA combined with antigen can be analyzed together, being limited only by the number of analytes that can be measured simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauman JG, Bayer JA, van Dekken H (1990) Fluorescent in-situ hybridization to detect cellular RNA by flow cytometry and confocal microscopy. J Microsc 157(Pt 1):73–81. https://doi.org/10.1111/j.1365-2818.1990.tb02948.x

    Article  CAS  PubMed  Google Scholar 

  2. Porichis F, Hart MG, Griesbeck M, Everett HL, Hassan M, Baxter AE, Lindqvist M, Miller SM, Soghoian DZ, Kavanagh DG, Reynolds S, Norris B, Mordecai SK, Nguyen Q, Lai C, Kaufmann DE (2014) High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry. Nat Commun 5:5641. https://doi.org/10.1038/ncomms6641

    Article  CAS  PubMed  Google Scholar 

  3. Lalli E, Gibellini D, Santi S, Facchini A (1992) In situ hybridization in suspension and flow cytometry as a tool for the study of gene expression. Anal Biochem 207(2):298–303. https://doi.org/10.1016/0003-2697(92)90015-y

    Article  CAS  PubMed  Google Scholar 

  4. Patterson BK, Till M, Otto P, Goolsby C, Furtado MR, McBride LJ, Wolinsky SM (1993) Detection of HIV-1 DNA and messenger RNA in individual cells by PCR-driven in situ hybridization and flow cytometry. Science 260(5110):976–979. https://doi.org/10.1126/science.8493534

    Article  CAS  PubMed  Google Scholar 

  5. Belloc F, Durrieu F (1994) Detection of mRNA species by flow cytometry. Methods Cell Biol 42(Pt B):59–69. https://doi.org/10.1016/s0091-679x(08)61068-7

    Article  CAS  PubMed  Google Scholar 

  6. Borzi RM, Piacentini A, Monaco MC, Lisignoli G, Degrassi A, Cattini L, Santi S, Facchini A (1996) A fluorescent in situ hybridization method in flow cytometry to detect HIV-1 specific RNA. J Immunol Methods 193(2):167–176. https://doi.org/10.1016/0022-1759(96)00070-1

    Article  CAS  PubMed  Google Scholar 

  7. Larsson C, Grundberg I, Soderberg O, Nilsson M (2010) In situ detection and genotyping of individual mRNA molecules. Nat Methods 7(5):395–397. https://doi.org/10.1038/nmeth.1448

    Article  CAS  PubMed  Google Scholar 

  8. Player AN, Shen LP, Kenny D, Antao VP, Kolberg JA (2001) Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J Histochem Cytochem 49(5):603–612. https://doi.org/10.1177/002215540104900507

    Article  CAS  PubMed  Google Scholar 

  9. Frei AP, Bava FA, Zunder ER, Hsieh EW, Chen SY, Nolan GP, Gherardini PF (2016) Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat Methods 13(3):269–275. https://doi.org/10.1038/nmeth.3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duckworth AD, Gherardini PF, Sykorova M, Yasin F, Nolan GP, Slupsky JR, Kalakonda N (2019) Multiplexed profiling of RNA and protein expression signatures in individual cells using flow or mass cytometry. Nat Protoc 14(3):901–920. https://doi.org/10.1038/s41596-018-0120-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477. https://doi.org/10.1038/nbt0502-473

    Article  CAS  PubMed  Google Scholar 

  12. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3(12):995–1000. https://doi.org/10.1038/nmeth947

    Article  CAS  PubMed  Google Scholar 

  13. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19(3):225–232. https://doi.org/10.1038/898

    Article  CAS  PubMed  Google Scholar 

  14. Brodin P (2019) The biology of the cell – insights from mass cytometry. FEBS J 286(8):1514–1522. https://doi.org/10.1111/febs.14693

    Article  CAS  PubMed  Google Scholar 

  15. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696. https://doi.org/10.1126/science.1198704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muftuoglu M, Li L, Liang S, Mak D, Lin AJ, Fang J, Burks JK, Chen K, Andreeff M (2021) Extended live-cell barcoding approach for multiplexed mass cytometry. Sci Rep 11(1):12388. https://doi.org/10.1038/s41598-021-91816-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hartmann FJ, Simonds EF, Bendall SC (2018) A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci Rep 8(1):10770. https://doi.org/10.1038/s41598-018-28791-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mei HE, Leipold MD, Schulz AR, Chester C, Maecker HT (2015) Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol 194(4):2022–2031. https://doi.org/10.4049/jimmunol.1402661

    Article  CAS  PubMed  Google Scholar 

  19. Han G, Spitzer MH, Bendall SC, Fantl WJ, Nolan GP (2018) Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat Protoc 13(10):2121–2148. https://doi.org/10.1038/s41596-018-0016-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagesh Kalakonda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duckworth, A.D., Slupsky, J.R., Kalakonda, N. (2024). Highly Multiplexed and Simultaneous Characterization of Protein and RNA in Single Cells by Flow or Mass Cytometry Platforms Using Proximity Ligation Assay for RNA. In: Gužvić, M. (eds) Single Cell Analysis. Methods in Molecular Biology, vol 2752. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3621-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3621-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3620-6

  • Online ISBN: 978-1-0716-3621-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics