Skip to main content

Nod Factor Lipopolysaccharide Purification to Study Nitrogen-Fixing Bacteria Symbiosis with Legumes

  • Protocol
  • First Online:
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2751))

  • 291 Accesses

Abstract

Nod factors (NF) are lipochitooligosaccharides produced by nitrogen-fixing rhizobia bacteria. They are key components of the rhizobia-plant signaling exchange required for symbiosis. Thus, techniques to extract, detect, characterize, and purify NF are crucial for the identification of both rhizobial and plant mechanisms underlying nitrogen-fixing symbiosis. Here, we describe a method for NF detection using radiolabeling and thin-layer chromatography. Furthermore, we describe a technique for purifying NF for downstream analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldroyd GED (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  2. Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  3. Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  4. Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Springer, Dordrecht, pp 361–386

    Chapter  Google Scholar 

  5. Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  7. Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  CAS  PubMed  Google Scholar 

  8. Dénarié J, Cullimore J (1993) Lipo-oligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis. Cell 74:951–954

    Article  PubMed  Google Scholar 

  9. Downie JA, Walker SA (1999) Plant responses to nodulation factors. Curr Opin Plant Biol 2:483–489

    Article  CAS  PubMed  Google Scholar 

  10. Oldroyd GED, Mitra RM, Wais RJ, Long SR (2001) Evidence for structurally specific negative feedback in the nod factor signal transduction pathway. Plant J 28:191–199

    Article  CAS  PubMed  Google Scholar 

  11. Folch-Mallol JL, Marroqui S, Sousa C et al (1996) Characterization of Rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol Plant-Microbe Interact 9:151–163

    Article  CAS  PubMed  Google Scholar 

  12. Roche P, Debellé F, Maillet F et al (1991) Molecular basis of symbiotic host specificity in rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143

    Article  CAS  PubMed  Google Scholar 

  13. Spaink HP, Aarts A, Stacey G et al (1992) Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant-Microbe Interact 5:72–80

    Article  CAS  PubMed  Google Scholar 

  14. del Cerro P, Megías M, López-Baena FJ et al (2019) Osmotic stress activates nif and fix genes and induces the Rhizobiumtropici CIAT 899 Nod factor production via NodD2 by up-regulation of the nodA2 operon and the nodA3 gene. PLoS One 14:e0213298

    Article  PubMed  PubMed Central  Google Scholar 

  15. del Cerro P, Pérez-Montaño F, Gil-Serrano A et al (2017) The Rhizobiumtropici CIAT 899 NodD2 protein regulates the production of Nod factors under salt stress in a flavonoid-independent manner. Sci Rep 7:1–10

    Google Scholar 

  16. Bek AS, Sauer J, Thygesen MB et al (2010) Improved characterization of nod factors and genetically based variation in LysM receptor domains identify amino acids expendable for nod factor recognition in Lotus spp. Mol Plant-Microbe Interact 23:58–66

    Article  CAS  PubMed  Google Scholar 

  17. Lortet G, Méar M, Lorquin J et al (1996) Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobiumsaheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol Plant-Microbe Interact 9:736–747

    Article  Google Scholar 

  18. Wais RJ, Keating DH, Long SR (2002) Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiol 129:211–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miwa H, Sun J, Oldroyd GED, Downie JA (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894

    Article  CAS  PubMed  Google Scholar 

  20. Miwa H, Sun J, Oldroyd GED, Downie JA (2006) Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotusjaponicus. Mol Plant-Microbe Interact 19:914–923

    Article  CAS  PubMed  Google Scholar 

  21. Amor BB, Shaw SL, Oldroyd GED et al (2003) The NFP locus of Medicagotruncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506

    Article  PubMed  Google Scholar 

  22. Geurts R, Fedorova E, Bisseling T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  CAS  PubMed  Google Scholar 

  23. del Cerro P, Ayala-García P, Jiménez-Guerrero I et al (2019) The non-flavonoid inducible nodA3 and the flavonoid regulated nodA1 genes of rhizobium tropici CIAT 899 guarantee nod factor production and nodulation of different host legumes. Plant Soil 440:185–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine N. Jacott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacott, C.N., Lozano-Morillo, S., del Cerro, P. (2024). Nod Factor Lipopolysaccharide Purification to Study Nitrogen-Fixing Bacteria Symbiosis with Legumes. In: Medina, C., López-Baena, F.J. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 2751. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3617-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3617-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3616-9

  • Online ISBN: 978-1-0716-3617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics