Skip to main content

Poly- and Perfluorinated Alkyl Substances in Food Packaging Materials

  • Chapter
  • First Online:
Food Packaging Materials

Part of the book series: Methods and Protocols in Food Science ((MPFS))

  • 206 Accesses

Abstract

Poly- and perfluorinated alkyl substances (PFAS) are commonly used additives in food packaging materials that impart water and grease resistance. However, this class of compounds is coming under increased scrutiny due to human health and environmental concerns. As a result, regulatory agencies are developing limits on PFAS in food packaging. The development and enforcement of such limits highlights the need for robust PFAS detection methods. Unfortunately, targeted methods that detect specific PFAS compounds can measure only a small subset of PFAS. Thus, total fluorine methods are preferred for food packaging applications. Commercially available total fluorine methods include combustion followed by ion chromatography or fluoride ion-selective electrodes. Surface measurement techniques are also under development, which may be particularly useful for nondestructive, rapid screening of food packaging materials. This chapter provides a discussion of the various methods available, and under development, for quantifying PFAS in food packaging materials. Alternative strategies to impart water and grease resistance to food packaging are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, Lunderberg DM, Lang JR, Peaslee GF (2017) Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett 4(3):104–111

    Article  Google Scholar 

  2. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schultes L, Peaslee GF, Brockman JD, Majumdar A, McGuinness SR, Wilkinson JT, Sandlom O, Ngwenyama RA, Benskin JP (2019) Total fluorine measurements in food packaging: how do current methods perform? Environ Sci Technol Lett 6(2):73–78

    Article  CAS  Google Scholar 

  4. Zabaleta I, Negreira N, Bizkarguenaga E, Prieto A, Covaci A, Zuloaga O (2017) Screening and identification of per- and polyfluoroalkyl substances in microwave popcorn bags. Food Chem 230:497–506

    Article  CAS  PubMed  Google Scholar 

  5. Knutsen HK, Alexander J, Barregârd L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasi-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T (2018) Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 16(12):5194

    Google Scholar 

  6. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG (2019) A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol 29:131–147

    Article  CAS  PubMed  Google Scholar 

  7. Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM (2020) Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem 40:606. https://doi.org/10.1002/etc.4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodrum PE, Anderson JK, Luz AL, Ansell GK (2020) Application of a framework for grouping and mixtures toxicity assessment of PFAS: a closer examination of dose-additivity approaches. Toxicol Sci 179:262. https://doi.org/10.1093/toxsci/kfaa123

    Article  CAS  PubMed Central  Google Scholar 

  9. Kwiatkowski CF, Andrews DQ, Birnbaum LS, Bruton TA, DeWitt JC, Knappe DRU, Maffini MV, Miller MF, Pelch KE, Reade A, Soehl A, Trier X, Venier M, Wagner CC, Wang Z, Blum A (2020) Scientific basis for managing PFAS as a chemical class. Environ Sci Technol Lett 7(8):532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Begley TH, White K, Honigfort P, Twaroski ML, Neches R, Walker RA (2005) Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam 22(10):1023–1031

    Article  CAS  PubMed  Google Scholar 

  11. Begley TH, Hsu W, Noonan G, Diachenko G (2008) Migration of fluorochemical paper additives from food-contact paper into foods and food simulants. Food Addit Contam 25(3):384–390

    Article  CAS  Google Scholar 

  12. Jogsten IE, Perelló G, Llebaria X, Bigas E, Martí-Cid R, Kärrman A, Domingo JL (2009) Exposure to perfluorinated compounds in Catalonia, Spain, through consumption of various raw and cooked foodstuffs, including packaged food. Food Chem Toxicol 47(7):1577–1583

    Article  CAS  PubMed  Google Scholar 

  13. Gebbink WA, Shahid U, Oskar S, Berger U (2013) Polyfluoroalkyl phosphate esters and perfluoroalkyl carboxylic acids in target food samples and packaging-method development and screening. Environ Sci Pollut Res 20(11):7949

    Article  CAS  Google Scholar 

  14. Tittlemier SA, Pepper K, Edwards L (2006) Concentrations of perfluorooctanesulfonamides in Canadian Total Diet Study composite food samples collected between 1992 and 2004. J Agric Food Chem 54(21):8385–8389

    Article  CAS  PubMed  Google Scholar 

  15. Lazcano RK, Choi YJ, Mashtare ML, Lee LS (2020) Characterizing and comparing per- and polyfluoroalkyl substances in commercially available biosolid and organic non-biosolid-based products. Environ Sci Technol 54:8640–8648

    Article  Google Scholar 

  16. Blaine AC, Rich CD, Hundal LS, Lau C, Mills MA, Harris KM, Higgins CP (2013) Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: Field and greenhouse studies. Environ Sci Technol 47:14062–14069

    Article  CAS  PubMed  Google Scholar 

  17. Blaine AC, Rich CD, Sedlacko EM, Hundal LS, Kumar K, Lau C, Mills MA, Harris KM, Higgins CP (2014) Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ Sci Technol 48:7858–7865

    Article  CAS  PubMed  Google Scholar 

  18. Yamashita, N; Yeung, L.W.Y.; Taniyasu, S.; Kwok, K.Y.; Petrick, G.; Gamo, T.; Guruge, K.S.; Lam, P.K.S.; Loganathan, B.G. (2012) Global distribution of PFOS and related chemicals. B.G. Loganathan, P.K.S. Lam (Eds.), Global contamination trends of persistent organic chemicals, Taylor & Francis Group. pp. 593–628

    Google Scholar 

  19. Muir D, Bossi R, Carlsson P, Evans M, De Silva A, Halsall C, Rauert C, Herzke D, Hung H, Letcher R, Rigét F, Roos A (2019) Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment – an update. Emerg Contam 5:240–271. ISSN 2405-6650

    Article  Google Scholar 

  20. Houde M, De Silva A, Letcher RJ, Muir DCG (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 45(19):7962–7973

    Article  CAS  PubMed  Google Scholar 

  21. Vierke L, Berger U, Cousins IT (2013) Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport. Environ Sci Technol 47:11032–11039

    Article  CAS  PubMed  Google Scholar 

  22. Safer States Bill Tracker. https://www.saferstates.org/bill-tracker/FilterBills. Accessed 8/3/2020

  23. Hogue C (2018) San Francisco moves to ban food containers made with fluorinated chemicals. Chem Eng News 96(32) https://cen.acs.org/policy/legislation-/San-Francisco-moves-ban-food/96/i32

  24. UNE 13432 (2001) Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging

    Google Scholar 

  25. Biodegradable Products Institute. Position on fluorinated chemicals. https://bpiworld.org/page-1857568. Accessed 6/20/2020

  26. Curtzwiler GW, Silva P, Hall A, Ivey A, Vorst K (2021) Significance of perfluoroalkyl substances (PFAS) in food packaging. Integr Environ Assess Manag 17(1):7–12

    Article  CAS  PubMed  Google Scholar 

  27. Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z (2020) An overview of the uses of per- and polyfluoroalkyl substances (PFAS). engrXiv preprint. https://doi.org/10.31224/osf.io/2eqac

  28. U.S. Food and Drug Administration. Inventory of Effective Food Contact Substances (FCS) Notifications. Accessed 7/15/2020

    Google Scholar 

  29. McDonough CA, Guelfo JL, Higgins CP (2019) Measuring total PFASs in water: the tradeoff between selectivity and inclusivity. Curr Opin Environ Sci Heal 7:13–18

    Article  Google Scholar 

  30. Borg D, Ivarsson J (2017) Analysis of PFASs and TOF in products. Nordic Council of Ministers

    Book  Google Scholar 

  31. Chen P, Yang J, Chen G, Yi S, Liu M, Zhu L (2020) Thyroid-disrupting effects of 6:2 and 8:2 polyfluoroalkyl phosphate diester (diPAPs) at environmentally relevant concentrations from integrated in silico and in vivo studies. Environ Sci Technol 7(5):330–336

    CAS  Google Scholar 

  32. Houtz EF, Sedlak DL (2012) Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environ Sci Technol 46(17):9342–9349

    Article  CAS  PubMed  Google Scholar 

  33. Janda J, Nödler K, Scheruer M, Happel O, Nürenberg G, Zwiener C, Lange FT (2019) Closing the gap – inclusion of ultrashort-chain perfluoroalkyl carboxylic acids in the total oxidizable precursor (TOP) assay protocol. Environ Sci: Processes Impacts 21:1926–1935

    CAS  Google Scholar 

  34. Yuan G, Peng H, Huang C, Hu J (2016) Ubiquitous occurrence of Fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure. Environ Sci Technol 50(2):942–950

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez KL, Hwang J-H, Esfahani AR, Sadmani AHMA, Lee WH (2020) Recent developments of PFAS-detecting sensors and future direction: a review. Micromachines 11:667

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shoemaker JA, Grimmett PE, Boutin BK (2009) Method 537, determination of selected perfluorinated alkyl acids in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS), Version 1.1, September 2009, National Exposure Research Laboratory, Office Of Research And Development, U. S. Environmental Protection Agency, Cincinnati, Ohio 45268: 600-R-08/092, Ver 1.1

    Google Scholar 

  37. Huang Y, Li H, Bai M, Huang X (2018) Efficient extraction of perfluorocarboxylic acids in complex samples with a monolithic adsorbent combining fluorophilic and anion-exchange interactions. Anal Chim Acta 1011:50–58

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Shi Y, Cai Y (2018) A highly selective dispersive liquid–liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem–mass spectrometry. J Chromatogr A 1544:1–7

    Article  CAS  PubMed  Google Scholar 

  39. Villaverde-de-Sáa E, Racamonde I, Quintana JB, Rodil R, Cela R (2012) Ion-pair sorptive extraction of perfluorinated compounds from water with low-cost polymeric materials: polyethersulfone vs polydimethylsiloxane. Anal Chim Acta 740:50–57

    Article  PubMed  Google Scholar 

  40. Wilson SR, Malerød H, Holm A, Molander P, Lundanes E, Greibrøkk T (2007) On-line SPE-Nano-LC-Nanospray-MS for rapid and sensitive determination of perfluorooctanoic acid and perfluorooctane sulfonate in river water. J Chromatogr Sci 45(3):146–152

    Article  CAS  PubMed  Google Scholar 

  41. Barreca S, Busetto M, Vitelli M, Colzani L, Clerici L, Dellavedova P (2018) Online solid-phase extraction LC-MS/MS: a rapid and valid method for the determination of perfluorinated compounds at sub ngL−1 level in natural water. J Chem 2018:1

    Article  Google Scholar 

  42. Miyake Y, Yamashita N, So MK, Rostkowski P, Taniyasu S, Lam PKS, Kannan K (2007) Determination of trace levels of total fluorine in water using combustion ion chromatography for fluorine: a mass balance approach to determine individual perfluorinated chemicals in water. J Chromatogr A 1143(1–2):98–104

    Article  CAS  PubMed  Google Scholar 

  43. Trier X, Taxvig C, Rosenmai AK, Pedersen GA (2017) PFAS in paper and board for food contact: options for risk management of poly- and perfluorinated substances. Nordic Council of Ministers

    Google Scholar 

  44. Galbraith Laboratories. GLI method summary: determination of total fluorine by oxygen flask combustion and ion-selective electrode. Retrieved from: http://galbraith.com/wp-content/uploads/2015/08/E9-3-Total-Fluorine-by-Oxygen-Flask-Combustion-ISE-GLI-Method-Summary.pdf

  45. EPA Method 340.2. Fluoride (potentiometric, ion selective electrode). Revised 1974

    Google Scholar 

  46. Safer Chemicals, Healthy Families (2020) A guide for quick-service restaurant chains: banning PFAS in food-contact materials. https://saferchemicals.org

  47. Ritter EE, Dickinson ME, Harron JP, Lunderberg DM, DeYoung PA, Robel AE, Field JA, Peaslee GF (2017) PIGE as a screening tool for per- and polyfluorinated substances in papers and textiles. Nucl Instrum Methods Phys Res 407:47–54

    Article  CAS  Google Scholar 

  48. Ong TTX, Blanch EW, Jones OAH (2020) Surface enhanced Raman spectroscopy in environmental analysis, monitoring and assessment. Sci Total Environ 720:137601

    Article  CAS  PubMed  Google Scholar 

  49. Fang C, Megharaj M, Naidu R (2016) Surface-enhanced Raman scattering (SERS) detection of fluorosurfactants in firefighting foams. RSC Adv 6(14):11140–11145

    Article  CAS  Google Scholar 

  50. Faiza F, Baxter G, Collins S, Sidiroglou F, Crana M (2020) Polyvinylidene fluoride coated optical fibre for detecting perfluorinated chemicals. Sens Actuators B Chem 312:128006

    Article  Google Scholar 

  51. Wang F, Lu Y, Yang J, Chen Y, Jing W, He L, Liu Y (2017) A smartphone readable colorimetric sensing platform for rapid multiple protein detection. Analyst 142:3177–3182

    Article  CAS  PubMed  Google Scholar 

  52. Fang C, Zhang X, Dong Z, Wang L, Megharaj M, Naidu R (2018) Smartphone appbased/portable sensor for the detection of fluoro-surfactant PFOA. Chemosphere 191:381–388

    Article  CAS  PubMed  Google Scholar 

  53. Megharaj M, Ravendra N, Mercurio P (2011) Anionic surfactant detection. AG01N2162FI I. PCT, Australia. AG01N2162FI

    Google Scholar 

  54. Fang C, Zuliang C, Megharaj M, Naidu R (2016) Potentiometric detection of AFFFs based on molecular imprinting polymer. Environ Technol Innov 5:52–59

    Article  Google Scholar 

  55. Wagner A, Raue B, Brauch HJ, Worch E, Lange FT (2013) Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography. J Chromatogr A 1295:82–89

    Article  CAS  PubMed  Google Scholar 

  56. Koch A, Aro R, Wang T, Yeung LWY (2020) Towards a comprehensive analytical workflow for the chemical characterization of organofluorine in consumer products and environmental samples. TrAC Trends Anal Chem 123:115423

    Article  CAS  Google Scholar 

  57. Vähä-Nissi M, Kervinen K, Savolainen A, Egolf S, Lau W (2006) Hydrophobic polymers as barrier dispersion coatings. J Appl Polym Sci 101:1958–1962

    Article  Google Scholar 

  58. Krook M, Gällstedt M, Hedenqvist MS (2005) A study on montmorillonite/polyethylene nanocomposite extrusion-coated paperboard. Packag Technol Sci 18:11–20

    Article  CAS  Google Scholar 

  59. Muncke J (2009) Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci Total Environ 407(16):4549–4559

    Article  CAS  PubMed  Google Scholar 

  60. Narancic T, Verstichel S, Reddy Chaganti S, Morales-Gamez L, Kenny ST, De Wilde B, Babu Padamati R, O’Connor KE (2018) Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ Sci Technol 52:10441–10452

    Article  CAS  PubMed  Google Scholar 

  61. Dilkes-Hoffman LS, Pratt S, Lant PA, Levett I, Laycock B (2018) Polyhydroxyalkanoate coatings restrict moisture uptake and associated loss of barrier properties of thermoplastic starch films. J Appl Polym Sci 135:46379

    Article  Google Scholar 

  62. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628

    Article  CAS  PubMed  Google Scholar 

  63. Fahim IS, Chbib H, Mahmoud HM (2019) The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustain Chem Pharm 12:100142

    Article  Google Scholar 

  64. Li Z, Rabnawaz M, Khan B (2020) Response surface methodology design for biobased and sustainable coatings for water- and oil-resistant paper. ACS Appl Polym Mater 2(3):1378–1387

    Article  CAS  Google Scholar 

  65. Hamdani SS, Li Z, Rabnawaz M, Kamdem DP, Khan BA (2020) Chitosan-graft-poly(dimethylsiloxane)/Zein coatings for the fabrication of environmentally friendly oil- and water-resistant paper. ACS Sustain Chem Eng 8(13):5147–5155

    Article  CAS  Google Scholar 

  66. Surita SC, Tansel B (2014) A multiphase analysis of partitioning and hazard index characteristics of siloxanes in biosolids. Ecotoxicol Environ Saf 102:79–83

    Article  CAS  PubMed  Google Scholar 

  67. Chi K, Wang H, Catchmark JM (2020) Sustainable starch-based barrier coatings for packaging applications. Food Hydrocoll 103:105696

    Article  CAS  Google Scholar 

  68. Hubbe MA (2007) Paper’s resistance to wetting – a review of internal sizing chemicals and their effects. Bioresources 2:106–145

    Article  Google Scholar 

  69. Tayeb AH, Tajvidi M, Bousfield D (2020) Paper-based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules 25:1344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Orts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scholes, R.C., Hart-Cooper, W., Glenn, G.M., Orts, W.J. (2024). Poly- and Perfluorinated Alkyl Substances in Food Packaging Materials. In: Otoni, C. (eds) Food Packaging Materials. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3613-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3613-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3612-1

  • Online ISBN: 978-1-0716-3613-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics