Skip to main content

Characterization of Novel Alpha-1-Antitrypsin Coding Variants in a Mammalian Cellular Model

  • Protocol
  • First Online:
Alpha-1 Antitrypsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2750))

Abstract

Advances in genetic screening technologies have considerably accelerated the discovery of rare alpha-1-antitrypsin (AAT) variants. Expression in cellular models is an effective approach to evaluate the pathogenic potential of these new AAT variants, whose clinical significance would otherwise remain uncertain. Here we provide a detailed description of established methods for in vitro characterization of AAT coding variants expressed in HEK293T/17 cells. The protocols include determination of secretion efficiency, the tendency to form polymeric chains and  the anti-elastase inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greene CM, Miller SDW, Carroll T et al (2008) Alpha-1 antitrypsin deficiency: a conformational disease associated with lung and liver manifestations. J Inherit Metab Dis 31:21–34. https://doi.org/10.1007/s10545-007-0748-y

    Article  PubMed  Google Scholar 

  2. Strnad P, McElvaney NG, Lomas DA (2020) Alpha1-antitrypsin deficiency. N Engl J Med 382:1443–1455. https://doi.org/10.1056/NEJMra1910234

    Article  PubMed  Google Scholar 

  3. Suri A, Patel D, Teckman JH (2022) Alpha-1 antitrypsin deficiency liver disease. Clin Liver Dis 26:391–402. https://doi.org/10.1016/j.cld.2022.03.004

    Article  PubMed  Google Scholar 

  4. Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357:605–607. https://doi.org/10.1038/357605a0

    Article  PubMed  Google Scholar 

  5. Fra A, Cosmi F, Ordoñez A et al (2016) Polymers of Z α1-antitrypsin are secreted in cell models of disease. Eur Respir J 47:1005–1009. https://doi.org/10.1183/13993003.00940-2015

    Article  PubMed  Google Scholar 

  6. Tan L, Dickens JA, Demeo DL et al (2014) Circulating polymers in α1-antitrypsin deficiency. Eur Respir J 43:1501–1504. https://doi.org/10.1183/09031936.00111213

    Article  PubMed  Google Scholar 

  7. Gooptu B, Ekeowa UI, Lomas DA (2009) Mechanisms of emphysema in alpha1-antitrypsin deficiency: molecular and cellular insights. Eur Respir J 34:475–488. https://doi.org/10.1183/09031936.00096508

    Article  PubMed  Google Scholar 

  8. Franciosi AN, Ralph J, O’Farrell NJ et al (2022) Alpha-1 antitrypsin deficiency-associated panniculitis. J Am Acad Dermatol 87:825–832. https://doi.org/10.1016/j.jaad.2021.01.074

    Article  PubMed  Google Scholar 

  9. Trivioli G, Marquez A, Martorana D et al (2022) Genetics of ANCA-associated vasculitis: role in pathogenesis, classification and management. Nat Rev Rheumatol 18:559–574. https://doi.org/10.1038/s41584-022-00819-y

    Article  PubMed  Google Scholar 

  10. McElvaney GN, Sandhaus RA, Miravitlles M et al (2020) Clinical considerations in individuals with α1-antitrypsin PI*SZ genotype. Eur Respir J 55:1902410. https://doi.org/10.1183/13993003.02410-2019

    Article  PubMed  PubMed Central  Google Scholar 

  11. Laffranchi M, Berardelli R, Ronzoni R et al (2018) Heteropolymerization of α-1-antitrypsin mutants in cell models mimicking heterozygosity. Hum Mol Genet 27:1785–1793. https://doi.org/10.1093/hmg/ddy090

    Article  PubMed  Google Scholar 

  12. Laffranchi M, Elliston EL, Miranda E et al (2020) Intrahepatic heteropolymerization of M and Z alpha-1-antitrypsin. JCI Insight 5:135459. https://doi.org/10.1172/jci.insight.135459

    Article  PubMed  Google Scholar 

  13. Seixas S, Marques PI (2021) Known mutations at the cause of alpha-1 antitrypsin deficiency an updated overview of SERPINA1 variation spectrum. Appl Clin Genet 14:173–194. https://doi.org/10.2147/TACG.S257511

    Article  PubMed  PubMed Central  Google Scholar 

  14. Giacopuzzi E, Laffranchi M, Berardelli R et al (2018) Real-world clinical applicability of pathogenicity predictors assessed on SERPINA1 mutations in alpha-1-antitrypsin deficiency. Hum Mutat 39:1203–1213. https://doi.org/10.1002/humu.23562

    Article  PubMed  Google Scholar 

  15. Ferrarotti I, Carroll TP, Ottaviani S et al (2014) Identification and characterisation of eight novel SERPINA1 null mutations. Orphanet J Rare Dis 9:172. https://doi.org/10.1186/s13023-014-0172-y

    Article  PubMed  PubMed Central  Google Scholar 

  16. Laffranchi M, Elliston ELK, Gangemi F et al (2019) Characterisation of a type II functionally-deficient variant of alpha-1-antitrypsin discovered in the general population. PLoS One 14:e0206955. https://doi.org/10.1371/journal.pone.0206955

    Article  PubMed  PubMed Central  Google Scholar 

  17. Owen MC, Brennan SO, Lewis JH, Carrell RW (1983) Mutation of antitrypsin to antithrombin. Alpha 1-antitrypsin Pittsburgh (358 met leads to Arg), a fatal bleeding disorder. N Engl J Med 309:694–698. https://doi.org/10.1056/NEJM198309223091203

    Article  PubMed  Google Scholar 

  18. Ioannidis NM, Rothstein JH, Pejaver V et al (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99:877–885. https://doi.org/10.1016/j.ajhg.2016.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  19. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 7(Unit7):20. https://doi.org/10.1002/0471142905.hg0720s76

    Article  Google Scholar 

  20. Fra AM, Gooptu B, Ferrarotti I et al (2012) Three new alpha1-antitrypsin deficiency variants help to define a C-terminal region regulating conformational change and polymerization. PLoS One 7:e38405. https://doi.org/10.1371/journal.pone.0038405

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ronzoni R, Ferrarotti I, D’Acunto E et al (2021) The importance of N186 in the alpha-1-antitrypsin shutter region is revealed by the Novel Bologna deficiency variant. Int J Mol Sci 22:5668. https://doi.org/10.3390/ijms22115668

    Article  PubMed  PubMed Central  Google Scholar 

  22. Matamala N, Lara B, Gomez-Mariano G et al (2018) Characterization of novel missense variants of SERPINA1 gene causing alpha-1 antitrypsin deficiency. Am J Respir Cell Mol Biol 58:706–716. https://doi.org/10.1165/rcmb.2017-0179OC

    Article  PubMed  Google Scholar 

  23. Ronzoni R, Berardelli R, Medicina D et al (2016) Aberrant disulphide bonding contributes to the ER retention of alpha1-antitrypsin deficiency variants. Hum Mol Genet 25:642–650. https://doi.org/10.1093/hmg/ddv501

    Article  PubMed  Google Scholar 

  24. Miranda E, Ferrarotti I, Berardelli R et al (2017) The pathological Trento variant of alpha-1-antitrypsin (E75V) shows nonclassical behaviour during polymerization. FEBS J 284:2110–2126. https://doi.org/10.1111/febs.14111

    Article  PubMed  PubMed Central  Google Scholar 

  25. Medicina D, Montani N, Fra AM et al (2009) Molecular characterization of the new defective Pbrescia alpha1-antitrypsin allele. Hum Mutat 30:E771–E781. https://doi.org/10.1002/humu.21043

    Article  PubMed  Google Scholar 

  26. QuickChange Primer Design. https://www.agilent.com/store/primerDesignProgram.jsp. Accessed 6 Jan 2023

  27. Lomas DA, Evans DL, Stone SR et al (1993) Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. Biochemistry 32:500–508. https://doi.org/10.1021/bi00053a014

    Article  PubMed  Google Scholar 

  28. Baugh RJ, Travis J (1976) Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry 15:836–841. https://doi.org/10.1021/bi00649a017

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an Alpha-1 Foundation grant to AF (ID: 829920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Fra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Denardo, A., Ben Khlifa, E., Bignotti, M., Fra, A. (2024). Characterization of Novel Alpha-1-Antitrypsin Coding Variants in a Mammalian Cellular Model. In: Bristow, C.L. (eds) Alpha-1 Antitrypsin. Methods in Molecular Biology, vol 2750. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3605-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3605-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3604-6

  • Online ISBN: 978-1-0716-3605-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics